Advertisement

Multibody System Dynamics

, Volume 32, Issue 2, pp 241–271 | Cite as

Simulation of rockfall trajectories with consideration of rock shape

  • R. I. LeineEmail author
  • A. Schweizer
  • M. Christen
  • J. Glover
  • P. Bartelt
  • W. Gerber
Article

Abstract

The aim of the paper is to develop a fully 3D simulation technique for rockfall dynamics taking rock shape into account and using the state-of-the-art methods of multibody dynamics and nonsmooth contact dynamics. The rockfall simulation technique is based on the nonsmooth contact dynamics method with hard contact laws. The rock is modeled as an arbitrary convex polyhedron and the terrain model is based on a high resolution digital elevation model. A specialized friction law for rockfall is proposed which allows for the description of scarring behavior (i.e., rocks tend to slide over the terrain before lift-off). The influence of rock geometry on rockfall dynamics is studied through two well-chosen numerical simulations.

Keywords

Natural hazards Nonsmooth dynamics Unilateral constraint Contact Friction 

Notes

Acknowledgements

The project Multi-body Dynamics of Polygonised 3D Objects with Unilateral Frictional Contact: Application to Rockfall, being a cooperation between the SLF/WSL and the Center of Mechanics (ETH Zurich), has been funded by the Swiss National Science Foundation under project number 200021-119613/1.

References

  1. 1.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems; Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics., vol. 35. Springer, Berlin (2008) zbMATHGoogle Scholar
  2. 2.
    Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Andrew, R., Hume, H., Bartingale, R., Rock, A., Zhang, R.: CRSP-3D User’s Manual Colorado Rockfall Simulation Program. Federal Highway Administration. Publication No. FHWA-CFL/TD-12-007 (2012) Google Scholar
  4. 4.
    Batista, M.: Steady motion of a rigid disk of finite thickness on a horizontal plane. Int. J. Non-Linear Mech. 41, 605–621 (2006) CrossRefzbMATHGoogle Scholar
  5. 5.
    Bourrier, F., Dorren, L., Nicot, F., Berger, F., Darve, F.: Toward objective rockfall trajectory simulation using a stochastic impact model. Geomorphology 110(3–4), 68–79 (2009) CrossRefGoogle Scholar
  6. 6.
    Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Communications and Control Engineering Series. Springer, London (1999) CrossRefzbMATHGoogle Scholar
  7. 7.
    Canudas de Wit, C., Olsson, H., Åström, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995) CrossRefzbMATHGoogle Scholar
  8. 8.
    Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B., Gerber, W., Deubelbeiss, Y., Feistl, T., Volkwein, A.: Integral hazard management using a unified software environment: numerical simulation tool “RAMMS” for gravitational natural hazards. In: Koboltschnig, G., Hübl, J., Braun, J. (eds.) Proceedings of 12th Congress INTERPRAEVENT, vol. 1, pp. 77–86 (2012) Google Scholar
  9. 9.
    Christen, M., Kowalski, J., Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–14 (2010) CrossRefGoogle Scholar
  10. 10.
    Crosta, G., Agliardi, F.: Parametric evaluation of 3D dispersion of rockfall trajectories. Nat. Hazards Earth Syst. Sci. 4, 583–598 (2004) CrossRefGoogle Scholar
  11. 11.
    Dimnet, E., Fremond, M., Gormaz, R., San Martin, J.: Collisions of rigid bodies, deformable bodies and fluids. In: Bathe, K. (ed.) Proceedings of 2nd MIT Conference on Computational Fluid and Solid Mechanics, Vols. 1 and 2, Amsterdam, 17–20 June, pp. 1317–1321. Elsevier/MIT Press, Cambridge (2003) Google Scholar
  12. 12.
    Dorren, L.: A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. 27(1), 69–87 (2003) CrossRefGoogle Scholar
  13. 13.
    Dubois, F., Jean, M., Renouf, M., Mozul, R., Martin, A., Bagneris, M.: LMGC90. In: CSMA 2011 10e Colloque National en Calcul des Structures, May 2011. Presqu’île de Giens, Var (2011) Google Scholar
  14. 14.
    Frémond, M.: Rigid bodies collisions. Phys. Lett. A 204, 33–41 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18, 653–677 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Giani, G.: Rock Slope Stability Analysis. Balkema, Rotterdam (1992) Google Scholar
  17. 17.
    Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Glocker, C.: Set-Valued Force Laws, Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001) CrossRefzbMATHGoogle Scholar
  19. 19.
    Glocker, C.: Energetic consistency conditions for standard impacts. Part I. Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Glocker, C.: Energetic consistency conditions for standard impacts. Part II. Poisson-type inequality impact laws. Multibody Syst. Dyn. (2013). doi: 10.1007/s11044-013-9387-2
  21. 21.
    Glukhikh, Y., Tkhai, V.: Parametric resonance in the problem of a heavy rigid body rolling along a straight line on a plane. Int. J. Appl. Math. Mech. 66(6), 971–984 (2002) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Guzzetti, F., Crosta, G., Detti, R., Agliardi, F.: STONE: a computer program for the three-dimensional simulation of rock-falls. Comput. Geosci. 28(9), 1079–1093 (2002) CrossRefGoogle Scholar
  23. 23.
    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975) CrossRefGoogle Scholar
  24. 24.
    Jean, M.: The non smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) CrossRefzbMATHGoogle Scholar
  26. 26.
    Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985) CrossRefGoogle Scholar
  27. 27.
    Kenner, R., Phillips, M., Danioth, C., Denier, C., Thee, P., Zgraggen, A.: Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps. Cold Reg. Sci. Technol. 67(3), 157–164 (2011) CrossRefGoogle Scholar
  28. 28.
    Lan, H., Martin, C.D., Lim, C.H.: RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 33(2), 262–279 (2007) CrossRefGoogle Scholar
  29. 29.
    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994) Google Scholar
  30. 30.
    Le Hir, C.: Forêt et chutes de blocs: méthodologie de modélisation spatialisée du rôle de protection. Ph.D. thesis, Cemagref/Université de Marne-La-Vallée (2005) Google Scholar
  31. 31.
    Le Hir, C., Dimnet, E., Berger, F., Dorren, L.: TIN-based 3D deterministic simulation of rockfall taking trees into account. Geophys. Res. Abstr. 8, 04157 (2006) Google Scholar
  32. 32.
    Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21(5), 869–896 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) zbMATHGoogle Scholar
  34. 34.
    Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 16(1), 41–54 (1998) CrossRefzbMATHGoogle Scholar
  35. 35.
    Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008) CrossRefzbMATHGoogle Scholar
  36. 36.
    Möller, M.: Consistent integrators for nonsmooth dynamical systems. Ph.D. thesis, ETH, Zurich (2011) Google Scholar
  37. 37.
    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988) CrossRefGoogle Scholar
  38. 38.
    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, London (1988) Google Scholar
  39. 39.
    Rafiee, A., Vinches, M., Dubois, F.: The non-smooth contact dynamics method applied to the mechanical simulation of a jointed rock mass. In: Proceedings of the 7th EUROMECH Nonlinear Dynamics Conference (ENOC2011), Rome (2011) Google Scholar
  40. 40.
    Studer, C.: Numerics of Unilateral Contacts and Friction—Modeling and Numerical Time Integration in Non-smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Heidelberg (2009) CrossRefzbMATHGoogle Scholar
  41. 41.
    Studer, C., Leine, R.I., Glocker, C.: Step size adjustment and extrapolation for time stepping schemes in nonsmooth dynamics. Int. J. Numer. Methods Eng. 76(11), 1747–1781 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L.K.A., Gerber, W., Jaboyedoff, M.: Rockfall characterisation and structural protection—a review. Nat. Hazards Earth Syst. Sci. 11(9), 2617–2651 (2011) CrossRefGoogle Scholar
  43. 43.
    Woltjer, M., Rammer, W., Brauner, M., Seidl, R., Mohren, G.M.J., Lexer, M.J.: Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J. Environ. Manag. 87(3), 373–388 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. I. Leine
    • 1
    Email author
  • A. Schweizer
    • 1
  • M. Christen
    • 2
  • J. Glover
    • 2
  • P. Bartelt
    • 2
  • W. Gerber
    • 3
  1. 1.Institute of Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  2. 2.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations