Multibody System Dynamics

, Volume 31, Issue 3, pp 309–338 | Cite as

A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation

  • Marko K. Matikainen
  • Antti I. Valkeapää
  • Aki M. Mikkola
  • A. L. Schwab
Article

Abstract

Finite element analysis using plate elements based on the absolute nodal coordinate formulation (ANCF) can predict the behaviors of moderately thick plates subject to large deformation. However, the formulation is subject to numerical locking, which compromises results. This study was designed to investigate and develop techniques to prevent or mitigate numerical locking phenomena. Three different ANCF plate element types were examined. The first is the original fully parameterized quadrilateral ANCF plate element. The second is an update to this element that linearly interpolates transverse shear strains to overcome slow convergence due to transverse shear locking. Finally, the third is based on a new higher order ANCF plate element that is being introduced here. The higher order plate element makes it possible to describe a higher than first-order transverse displacement field to prevent Poisson thickness locking. The term “higher order” is used, because some nodal coordinates of the new plate element are defined by higher order derivatives.

The performance of each plate element type was tested by (1) solving a comprehensive set of small deformation static problems, (2) carrying out eigenfrequency analyses, and (3) analyzing a typical dynamic scenario. The numerical calculations were made using MATLAB. The results of the static and eigenfrequency analyses were benchmarked to reference solutions provided by the commercially available finite element software ANSYS.

The results show that shear locking is strongly dependent on material thickness. Poisson thickness locking is independent of thickness, but strongly depends on the Poisson effect. Poisson thickness locking becomes a problem for both of the fully parameterized element types implemented with full 3-D elasticity. Their converged results differ by about 18 % from the ANSYS results. Corresponding results for the new higher order ANCF plate element agree with the benchmark. ANCF plate elements can describe the trapezoidal mode; therefore, they do not suffer from Poisson locking, a reported problem for fully parameterized ANCF beam elements. For cases with shear deformation loading, shear locking slows solution convergence for models based on either the original fully parameterized plate element or the newly introduced higher order plate element.

Keywords

Higher order plate element Multibody dynamics Numerical locking 

References

  1. 1.
    Ahmad, S., Irons, B.M., Zienkiewich, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Numer. Methods Eng. 2, 419–451 (1970) CrossRefGoogle Scholar
  2. 2.
    ANSYS Inc.: ANSYS Academic Research, Release 12.0.1. Help System, Element Reference (2009) Google Scholar
  3. 3.
    Arciniega, R.A., Reddy, J.N.: Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput. Methods Appl. Mech. Eng. 196, 1048–1073 (2007) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ardema, M.D., Skowronski, J.M.: Spacar-computer program for dynamic analysis of flexible spatial mechanisms and manipulators. In: Schiehlen, W.O. (ed.) Multibody Systems Handbook. Springer, Berlin (1990) Google Scholar
  5. 5.
    Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996) Google Scholar
  6. 6.
    Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int. J. Numer. Methods Eng. 40(23), 4427–4449 (1997) CrossRefMATHGoogle Scholar
  7. 7.
    Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 1st edn. Cambridge University Press, Cambridge (1997), reprinted 2000 MATHGoogle Scholar
  8. 8.
    Büchter, N., Ramm, E.: 3D-extension of nonlinear shell equations based on the enhanced assumed strain concept. In: Computational Methods in Applied Sciences, pp. 55–62 (1992) Google Scholar
  9. 9.
    Carrera, E., Brischetto, S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82(4), 549–562 (2008) CrossRefGoogle Scholar
  10. 10.
    Dmitrochenko, O., Matikainen, M., Mikkola, A.: The simplest 3- and 4-noded fully-parameterized ancf plate elements. In: Proceedings of the ASME 2012 Int. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, USA, 12–15 August 2012 Google Scholar
  11. 11.
    Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Int. J. Numer. Methods Eng. 10(1), 17–43 (2003) MATHGoogle Scholar
  12. 12.
    Dufva, K., Shabana, A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005) Google Scholar
  13. 13.
    Dvorkin, E.N., Bathe, K.-J.: A continuum mechanics based four-node shell element for general nonlinear analysis. Eng. Comput. 77, 77–88 (1984) CrossRefGoogle Scholar
  14. 14.
    García-Vallejo, D., Valverde, J., Domínguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42(4), 347–369 (2005) CrossRefGoogle Scholar
  15. 15.
    Gerstmayr, J., Matikainen, M.K., Mikkola, A.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June 2005 Google Scholar
  17. 17.
    Hauptmann, R., Doll, S., Harnau, N., Schweizerhof, K.: ‘Solid-shell’ elements with linear and quadratic shape functions at large deformations with nearly incompressible materials. Comput. Struct. 79, 1671–1685 (1997) CrossRefGoogle Scholar
  18. 18.
    Kulikov, G.M., Plotnikova, S.V.: Equivalent single-layer and layer-wise shell theories and rigid-body motions, part 1: foundations. Int. J. Numer. Methods Eng. 12(4), 275–283 (2005) Google Scholar
  19. 19.
    Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18, 375–596 (2007) CrossRefMATHGoogle Scholar
  20. 20.
    Matikainen, M., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In: International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 19–25 September 2010 Google Scholar
  21. 21.
    Matikainen, M.K., Schwab, A.L., Mikkola, A.: Comparison of two moderately thick plate elements based on the absolute nodal coordinate formulation. In: Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June–2 July 2009 Google Scholar
  22. 22.
    Matikainen, M.K., von Hertzen, R., Mikkola, A.M., Gerstmayr, J.: Elimination of high frequencies in the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1), 103–116 (2010) Google Scholar
  23. 23.
    Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. (2013) Google Scholar
  24. 24.
    Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1, 103–108 (2006) CrossRefGoogle Scholar
  25. 25.
    Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformations of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Betsch, P.F.G., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3d-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130(1–2), 57–79 (1996) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Rhim, J., Lee, S.W.: A vectorial approach to computational modelling of beams undergoing finite rotations. Int. J. Numer. Methods Eng. 41(3), 527–540 (1998) CrossRefMATHGoogle Scholar
  28. 28.
    Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22, 181–197 (2009) CrossRefMATHGoogle Scholar
  29. 29.
    Schwab, A., Gerstmayr, J., Meijaard, J.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the IDETC/CIE 2007, ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007, paper number DETC2007-34754 Google Scholar
  30. 30.
    Schwab, A., Meijaard, J.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5, 1 (2010) CrossRefGoogle Scholar
  31. 31.
    Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40(15), 2775–2790 (1997) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Shabana, A.A., Yakoub, Y.R.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001) CrossRefGoogle Scholar
  34. 34.
    Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, Tokyo (1983) Google Scholar
  36. 36.
    Toscano, R.G., Dvorkin, E.N.: A shell element for finite strain analysis: hyperelastic material models. Eng. Comput. 24, 514–535 (2007) CrossRefMATHGoogle Scholar
  37. 37.
    Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marko K. Matikainen
    • 1
  • Antti I. Valkeapää
    • 1
  • Aki M. Mikkola
    • 1
  • A. L. Schwab
    • 2
  1. 1.Department of Mechanical EngineeringLappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Laboratory for Engineering MechanicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations