Multibody System Dynamics

, Volume 31, Issue 3, pp 339–370 | Cite as

Interpolation of rotation and motion

Article

Abstract

In Cosserat solids such as shear deformable beams and shells, the displacement and rotation fields are independent. The finite element implementation of these structural components within the framework of flexible multibody dynamics requires the interpolation of rotation and motion fields. In general, the interpolation process does not preserve fundamental properties of the interpolated field. For instance, interpolation of an orthogonal rotation tensor does not yield an orthogonal tensor, and furthermore, does not preserve the tensorial nature of the rotation field. Consequently, many researchers have been reluctant to apply the classical interpolation tools used in finite element procedures to interpolate these fields. This paper presents a systematic study of interpolation algorithms for rotation and motion. All the algorithms presented here preserve the fundamental properties of the interpolated rotation and motion fields, and furthermore, preserve their tensorial nature. It is also shown that the interpolation of rotation and motion is as accurate as the interpolation of displacement, a widely accepted tool in the finite element method. The algorithms presented in this paper provide interpolation tools for rotation and motion that are accurate, easy to implement, and physically meaningful.

Keywords

Finite rotation Finite motion Interpolation algorithms Finite element procedures Flexible multibody systems 

References

  1. 1.
    Agrawal, O., Shabana, A.: Application of deformable-body mean axis to flexible multibody system dynamics. Comput. Methods Appl. Mech. Eng. 56(2), 217–245 (1986) CrossRefMATHGoogle Scholar
  2. 2.
    Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996) Google Scholar
  3. 3.
    Bauchau, O.: Flexible Multibody Dynamics. Springer, Dordrecht (2011) CrossRefMATHGoogle Scholar
  4. 4.
    Bauchau, O., Choi, J.: The vector parameterization of motion. Nonlinear Dyn. 33(2), 165–188 (2003) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bauchau, O., Craig, J.: Structural Analysis with Application to Aerospace Structures. Springer, Dordrecht (2009) Google Scholar
  6. 6.
    Bauchau, O., Li, L.: Tensorial parameterization of rotation and motion. J. Comput. Nonlinear Dyn. 6(3), 031007 (2011) CrossRefGoogle Scholar
  7. 7.
    Bauchau, O., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Betsch, P., Steinmann, P.: Frame-indifferent beam element based upon the geometrically exact beam theory. Int. J. Numer. Methods Biomed. Eng. 54, 1775–1788 (2002) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cardona, A., Géradin, M.: A beam finite element non-linear theory with finite rotation. Int. J. Numer. Methods Biomed. Eng. 26, 2403–2438 (1988) CrossRefMATHGoogle Scholar
  10. 10.
    Crisfield, M., Jelenić, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455(1983), 1125–1147 (1999) CrossRefMATHGoogle Scholar
  11. 11.
    Géradin, M., Cardona, A.: Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput. Mech. 4, 115–135 (1989) CrossRefGoogle Scholar
  12. 12.
    Géradin, M., Cardona, A.: Flexible Multibody System: A Finite Element Approach. Wiley, New York (2001) Google Scholar
  13. 13.
    Hughes, T.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987) MATHGoogle Scholar
  14. 14.
    Ibrahimbegović, A., Frey, F., Kozar, I.: Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int. J. Numer. Methods Biomed. Eng. 38(21), 3653–3673 (1995) CrossRefMATHGoogle Scholar
  15. 15.
    Jelenić, G., Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999) CrossRefMATHGoogle Scholar
  16. 16.
    Malvern, L.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs (1969) Google Scholar
  17. 17.
    Milenković, V.: Coordinates suitable for angular motion synthesis in robots. In: Proceedings of the Robot VI Conference, Detroit, MI, 2–4 March 1982 (1982). Paper MS82-217 Google Scholar
  18. 18.
    Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34(2), 121–133 (2004) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics. Int. J. Numer. Methods Biomed. Eng. 54, 1683–1716 (2002) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Shabana, A.: Uniqueness of the geometric representation in large rotation finite element formulations. J. Comput. Nonlinear Dyn. 5(4), 044501 (2010) CrossRefGoogle Scholar
  22. 22.
    Shabana, A.: General method for modeling slope discontinuity and T-sections using ANCF gradient deficient finite elements. J. Comput. Nonlinear Dyn. 6(2), 024502 (2011) CrossRefGoogle Scholar
  23. 23.
    Shabana, A., Mikkola, A.: Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity. J. Mech. Des. 125(2), 342–350 (2003) CrossRefGoogle Scholar
  24. 24.
    Shabana, A., Wehage, R.: A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. J. Struct. Mech. 11(3), 401–431 (1983) CrossRefGoogle Scholar
  25. 25.
    Simo, J., Vu-Quoc, L.: A three dimensional finite strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986) CrossRefMATHGoogle Scholar
  26. 26.
    Stuelpnagel, J.: On the parameterization of the three-dimensional rotation group. SIAM Rev. 6(4), 422–430 (1964) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Wehage, R.: Quaternions and Euler parameters. A brief exposition. In: Haug, E. (ed.) Computer Aided Analysis and Optimization of Mechanical Systems Dynamics, pp. 147–180. Springer, Berlin (1984) CrossRefGoogle Scholar
  28. 28.
    Wiener, T.: Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments. Ph.D. thesis, Department of Aeronautical and Astronautical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (1962) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of Michigan-Shanghai Jiao Tong University Joint InstituteShanghaiChina

Personalised recommendations