Multibody System Dynamics

, Volume 31, Issue 2, pp 127–145 | Cite as

Modeling planar slider-crank mechanisms with clearance joints in RecurDyn

  • Alexander GummerEmail author
  • Bernd Sauer


Revolute joints in applications always show clearance between pin and bushing due to manufacturing tolerances, the need of relative motion or progressing wear. Many researchers developed and investigated methodologies to calculate the dynamic behavior of mechanisms with such imperfect joints. Very often they use a simple slider-crank mechanism to test or demonstrate the capability of their approaches. In this paper, a methodology for simulating a slider-crank mechanism with an imperfect revolute joint in RecurDyn, a commercial multibody simulation tool, is presented. Therefore, a thorough investigation of existing contact, damping and friction force models as well as different ways of modeling revolute joints in RecurDyn was conducted. For the investigation of the damping models, a special program for calculating the model parameters for a given coefficient of restitution was developed. Only one damping model was capable of reproducing the experimental results, which were found in literature. Some characteristic results of the slider-crank mechanism are presented in a way that they can be compared to results in other papers. Thereby. a good correlation was achieved, demonstrating the capabilities of the methodology.


Imperfect revolute joints Friction Damping Contact calculation Slider-crank mechanism 




hysteresis coefficient


Young’s modulus [N/mm2]


modified Young’s modulus [N/mm2]


relative curvature


force [N]


vector between pin and bushing center


diametric clearance [mm]


damping coefficient


coefficient of restitution


stiffness coefficient [N/mm]


length of bushing [mm]


damping and indentation exponents in RecurDyn damping model


stiffness exponent


radius [mm]


radius based clearance [mm]


velocity [mm/s]


parameters for definition of havsin-damping function


coefficient in Sjö’s friction law


penetration [mm]


coefficient of friction


Poisson’s ratio



indices for value pairs

















Circle-in-Circle contact


Coefficient of Restitution


MultiBody Simulation


  1. 1.
    Erkaya, S., Uzmay, I.: A neural-genetic (NN-GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20, 69–83 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Su, Y., Chen, W., Tong, Y., Xie, Y.: Wear prediction of clearance joint by integrating multi-body kinematics with finite-element method. J. Eng. Tribol. 224, 815–823 (2010) Google Scholar
  3. 3.
    Khulief, Y., Shabana, A.: A continuous force model for the impact analysis of flexible multi-body systems. Mech. Mach. Theory 22, 213–224 (1987) CrossRefGoogle Scholar
  4. 4.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990) CrossRefGoogle Scholar
  5. 5.
    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994) Google Scholar
  6. 6.
    Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012) CrossRefGoogle Scholar
  7. 7.
    Stoenescu, E.D., Marghitu, D.B.: Dynamic analysis of a planar rigid-link mechanism with rotating slider joint and clearance. J. Sound Vib. 266, 394–404 (2003) CrossRefGoogle Scholar
  8. 8.
    Liu, T.S., Lin, Y.S.: Dynamic analysis of flexible linkages with lubricated joints. J. Sound Vib. 141, 193–205 (1990) CrossRefGoogle Scholar
  9. 9.
    Farahanchi, F., Shaw, S.W.: Chaotic and periodic dynamics of a slider crank mechanism with slider clearance. J. Sound Vib. 177, 307–324 (1994) CrossRefzbMATHGoogle Scholar
  10. 10.
    Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998) CrossRefzbMATHGoogle Scholar
  11. 11.
    Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002) CrossRefzbMATHGoogle Scholar
  12. 12.
    Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43, 1625–1638 (2008) CrossRefzbMATHGoogle Scholar
  13. 13.
    Khemili, I., Romdhane, L.: Dynamic analysis of flexible slider-crank mechanism with clearance. Eur. J. Mech. A, Solids 27, 882–898 (2008) CrossRefzbMATHGoogle Scholar
  14. 14.
    Mauntler, N.: Kinematic and dynamic behavior of a wearing joint in a crank-slider mechanism. Ph.D. thesis, University of Florida (2009) Google Scholar
  15. 15.
    Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268, 643–652 (2010) CrossRefGoogle Scholar
  16. 16.
    Mukras, S., Kim, N.H., Schmitz, T.L., Sawyer, W.G.: Evaluation of contact force and elastic foundation models for wear analysis of multibody systems. In: Proceedings of the ASME 2010 International Design Engineering Technology Conferences, Montreal, Quebec, Canada, August 15–18 (2010). Paper No: DETC2010–DETC28750 Google Scholar
  17. 17.
    Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T., Sawyer, W.G.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132, 031604 (2010) CrossRefGoogle Scholar
  18. 18.
    Bai, Z.F., Zhao, Y.: Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using new hybrid contact force model. Int. J. Mech. Sci. 54, 190–205 (2012) CrossRefGoogle Scholar
  19. 19.
    Liu, C., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearance. J. Comput. Nonlinear Dyn. 1, 160–167 (2006) CrossRefGoogle Scholar
  20. 20.
    Liu, C., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearance. Mech. Mach. Theory 42, 183–197 (2007) CrossRefzbMATHGoogle Scholar
  21. 21.
    Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Ph.D. thesis, Universidady do Minho (2004) Google Scholar
  22. 22.
    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004) CrossRefGoogle Scholar
  23. 23.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. J. Multi-Body Dyn. 220, 21–34 (2006) Google Scholar
  24. 24.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational Joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 011007 (2008) CrossRefGoogle Scholar
  25. 25.
    Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44, 1211–1222 (2009) CrossRefzbMATHGoogle Scholar
  26. 26.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56, 277–295 (2009) CrossRefzbMATHGoogle Scholar
  27. 27.
    Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61, 633–653 (2010) CrossRefzbMATHGoogle Scholar
  28. 28.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65, 383–398 (2011) CrossRefGoogle Scholar
  31. 31.
    Flores, P., Ambrósio, J., Pimenta, C.J.C., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2008) Google Scholar
  32. 32.
    Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010) CrossRefzbMATHGoogle Scholar
  33. 33.
    Megahed, S.M., Haroun, A.F.: Analysis of the dynamic behavioral performance of mechanical systems with multibody clearance joints. J. Comput. Nonlinear Dyn. 7, 011002 (2012) CrossRefGoogle Scholar
  34. 34.
    Olyaei, A.A., Ghazavi, M.R.: Stabilizing slider-crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012) CrossRefGoogle Scholar
  35. 35.
    Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012) CrossRefGoogle Scholar
  36. 36.
    Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28, 369–393 (2012) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Soong, K., Thompson, B.S.: A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint. J. Mech. Des. 112, 183–189 (1990) CrossRefGoogle Scholar
  38. 38.
    Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37, 1213–1239 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop multibody mechanical system. J. Mech. Des. 121, 119–127 (1999) CrossRefGoogle Scholar
  40. 40.
    Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Aul, V., Kiekbusch, T., Marquart, M., Sauer, B.: Experimental and simulative determination of the frictional torque of roller bearings. In: Proc. of the 18th International Colloquium Tribology, Technische Akademie, Esslingen, pp. 10–12. Ostfildern, Germany, January 10–12 (2012) Google Scholar
  42. 42.
    Pereira, C.M., Ramalho, A.R., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011) CrossRefGoogle Scholar
  43. 43.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1996) Google Scholar
  44. 44.
    Teutsch, R., Sauer, B.: An Alternative slicing technique to consider pressure concentrations in non-Hertzian line contacts. J. Tribol. 126, 436–442 (2004) CrossRefGoogle Scholar
  45. 45.
    Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. 134, 021402 (2012) CrossRefGoogle Scholar
  46. 46.
    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. Int. J. Appl. Mech. 42, 440–445 (1975) Google Scholar
  47. 47.
    Teutsch, R.: Kontaktmodelle und Strategien zur Simulation von Wälzlagern und Wälzführungen. Ph.D. thesis, University of Kaiserslautern (2005) Google Scholar
  48. 48.
    Scheuermann, M.: Dynamiksimulation zur virtuellen Produktentwicklung von Rollenschienenführungen. Ph.D. thesis, University of Kaiserslautern (2010) Google Scholar
  49. 49.
    Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An effective and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99–120 (2010) CrossRefzbMATHGoogle Scholar
  50. 50.
    Kharaz, A.H., Gorham, D.A.: A study of the restitution coefficient in elastic-plastic impact. Philos. Mag. Lett. 80, 549–559 (2000) CrossRefGoogle Scholar
  51. 51.
    Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011) CrossRefzbMATHGoogle Scholar
  52. 52.
    Threlfall, D.C.: The inclusion of coulomb friction in mechanisms programs with particular reference to DRAM. Mech. Mach. Theory 13, 475–483 (1978) CrossRefGoogle Scholar
  53. 53.
    Dahl, P.R.: A solid Friction model. The Aerospace Corporation. Aerospace Report No. TOR-0158(3107-18)-1, (1968) Google Scholar
  54. 54.
    Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact models. Virtual Nonlinear Multibody Systems. In: Schiehlen, W., Valásek, M. (eds.) Nato Advanced Study Institute, vol. 103, pp. 57–81 (2003) Google Scholar
  55. 55.
    Sjö, A.: Numerical aspects in contact mechanics and rolling bearing simulation. Ph.D. thesis, Lund University, Sweden (1996) Google Scholar
  56. 56.
    Yanada, H., Sekikawa, Y.: Modeling of dynamic behaviors of friction. Mechatronics 18, 330–339 (2008) CrossRefGoogle Scholar
  57. 57.
    Canudas de Wit, C., Olsson, H., Aström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995) CrossRefzbMATHGoogle Scholar
  58. 58.
    Bauchau, O.A., Ju, C.: Modeling friction phenomena in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195, 6909–6924 (2006) CrossRefzbMATHGoogle Scholar
  59. 59.
    Olsson, H., Aström, K.J., Canudas de Wit, W.C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Machine Elements, Gears, and Transmissions (MEGT)University of KaiserslauternKaiserslauternGermany

Personalised recommendations