Advertisement

Multibody System Dynamics

, Volume 28, Issue 3, pp 225–237 | Cite as

Identifying the criterion spontaneously minimized during the take-off phase of a sub-maximal long jump through optimal synthesis

  • Monique Jackson
  • Ines Benkhemis
  • Mickaël Begon
  • Philippe Sardain
  • Claude Vallée
  • Patrick Lacouture
Article

Abstract

Optimal synthesis of human movement or the prediction of the kinematics of a new movement require not only that the multi-body system be modeled but also that a performance criterion is specified. For sub-maximal movements the selection of a suitable performance criterion, able to generate realistic dynamic behavior is difficult. A two-dimensional simulation model of the take-off phase of a sub-maximal long jump was developed to study the effect of criterion choice on the realism of simulated movements. A parametric optimization technique was employed to obtain solutions to the constrained equations of motion. Seven different criteria were evaluated, by comparing simulated movements with an actual performance, to identify the criterion which most closely approximated that spontaneously minimized by the athlete. Synthesis of the take-off phase of a sub-maximal long jump was found to be sensitive to the chosen criterion, with a criterion based on minimizing joint intersegmental forces found to perform well.

Keywords

Optimal synthesis Criterion Spline Parametric optimization Sub-maximal Long jump Biomechanics Human performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11044_2011_9278_MOESM1_ESM.zip (1 mb)
(ZIP 1.039 kB)

References

  1. 1.
    Jinha, A., Ait-Haddou, R., Herzog, W.: Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model. J. Biomech. 39, 1145–1152 (2006) CrossRefGoogle Scholar
  2. 2.
    Miller, R., Gillette, J., Derrick, T., Caldwell, G.: Muscle forces during running predicted by gradient-based and random search static optimisation algorithms. Comput. Methods Biomech. Biomed. Eng. 12, 217–225 (2009) CrossRefGoogle Scholar
  3. 3.
    Pedersen, D., Brand, R., Davy, D.: Pelvic muscle and acetabular contact forces during gait. J. Biomech. 30, 959–965 (1997) CrossRefGoogle Scholar
  4. 4.
    Anderson, F., Pandy, M.: Dynamic optimization of human walking. J. Biomech. Eng. 123, 381–390 (2001) CrossRefGoogle Scholar
  5. 5.
    Piazza, S., Delp, S.: The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29, 723–733 (1996) CrossRefGoogle Scholar
  6. 6.
    Raasch, C., Zajac, F., Ma, B., Levine, W.: Muscle coordination of maximum-speed pedaling. J. Biomech. 30, 595–602 (1997) CrossRefGoogle Scholar
  7. 7.
    Challis, J., Kerwin, D.: An analytical examination of muscle force estimations using optimization techniques. Proc. Inst. of Mech. Eng., Part H: J. Eng. Med. 207, 139–148 (1993) CrossRefGoogle Scholar
  8. 8.
    Glitsch, U., Baumann, W.: The three-dimensional determination of internal loads in the lower extremity. J. Biomech. 30, 1123–1131 (1997) CrossRefGoogle Scholar
  9. 9.
    Pandy, M., Garner, B., Anderson, F.: Optimal-control of non-ballistic muscular movements—a constraint-based performance criterion for rising from a chair. J. Biomech. Eng. 117, 15–26 (1995) CrossRefGoogle Scholar
  10. 10.
    Hatze, H.: A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J. Biomech. 14, 135–142 (1981) CrossRefGoogle Scholar
  11. 11.
    King, M., Yeadon, M.: Maximising somersault rotation in tumbling. J. Biomech. 37, 471–477 (2004) CrossRefGoogle Scholar
  12. 12.
    Wilson, C., Yeadon, M., King, M.: Considerations that affect optimised simulation in a running jump for height. J. Biomech. 40, 3155–3161 (2007) CrossRefGoogle Scholar
  13. 13.
    Zajac, F., Neptune, R., Kautz, S.: Biomechanics and muscle coordination of human walking—Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16, 215–232 (2002) CrossRefGoogle Scholar
  14. 14.
    Marshall, R., Wood, G., Jennings, L.: Performance-objectives in human movement—a review and application to the stance phase of normal walking. Hum. Mov. Sci. 8, 571–594 (1989) CrossRefGoogle Scholar
  15. 15.
    Ackermann, M., van den Bogert, A.: Optimality principles for model-based prediction of human gait. J. Biomech. 43, 1055–1060 (2010) CrossRefGoogle Scholar
  16. 16.
    Winter, D.: Biomechanics and Motor Control of Human Movement. Wiley-Interscience, New York (1979) Google Scholar
  17. 17.
    Kapandji, A.: Anatomie fonctionnelle: I, II and III Maloine, Paris (2005) Google Scholar
  18. 18.
    Bessonnet, G., Chessé, S., Sardain, P.: Optimal gait synthesis of a seven-link planar biped. Int. J. Robot. Res. 23, 1059–1073 (2004) CrossRefGoogle Scholar
  19. 19.
    Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24, 523–536 (2005) CrossRefGoogle Scholar
  20. 20.
    Lawrence, C., Zhou, J., Tits, A.: User’s Guide for CFSQP Version 2.5: a C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality constraints. Institute for Systems Research, University of Maryland (1997) Google Scholar
  21. 21.
    Leboeuf, F., Bessonnet, G., Seguin, P., Lacouture, P.: Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst. Dyn. 16, 213–236 (2006) zbMATHCrossRefGoogle Scholar
  22. 22.
    Chow, C., Jacobson, D.: Studies of human locomotion via optimal programming. Math. Biosci. 10, 239–306 (1971) zbMATHCrossRefGoogle Scholar
  23. 23.
    Bessonnet, G., Sardain, P., Chessé, S.: Optimal motion synthesis—dynamic modelling and numerical solving aspects. Multibody Syst. Dyn. 8, 257–278 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pandy, M., Anderson, F., Hull, D.: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. Biomech. Eng. 114, 450–460 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Monique Jackson
    • 1
  • Ines Benkhemis
    • 2
  • Mickaël Begon
    • 1
  • Philippe Sardain
    • 3
  • Claude Vallée
    • 3
  • Patrick Lacouture
    • 3
  1. 1.Dép. de Kinésiologie, Centre de Recherche Hôpital Sainte-JustineUniversité de MontréalMontréalCanada
  2. 2.SENSIXPoitiersFrance
  3. 3.Institut PPRIMMEUniversité de PoitiersPoitiersFrance

Personalised recommendations