Multibody System Dynamics

, Volume 27, Issue 1, pp 21–53 | Cite as

Multi-disciplinary constrained optimization of wind turbines

Article

Abstract

We describe procedures for the multi-disciplinary design optimization of wind turbines, where design parameters are optimized by maximizing a merit function, subjected to constraints that translate all relevant design requirements. Evaluation of merit function and constraints is performed by running simulations with a parametric high-fidelity aero-servo-elastic model; a detailed cross-sectional structural model is used for the minimum weight constrained sizing of the rotor blade. To reduce the computational cost, the multi-disciplinary optimization is performed by a multi-stage process that first alternates between an aerodynamic shape optimization step and a structural blade optimization one, and then combines the two to yield the final optimum solution. A complete design loop can be performed using the proposed algorithm using standard desktop computing hardware in one-two days. The design procedures are implemented in a computer program and demonstrated on the optimization of multi-MW horizontal axis wind turbines and on the design of an aero-elastically scaled wind tunnel model.

Keywords

Wind turbine Multi-disciplinary optimization Holistic design Aero-servo-elasticity Multibody dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anonymous: ECN Blade Optimization Tool BOT. ECN Wind Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, www.ecn.nl
  2. 2.
    Lee, K., Joo, W., Kim, K., Lee, D., Lee, K., Park, J.: Numerical optimization using improvement of the design space feasibility for Korean offshore horizontal axis wind turbine blade. In: European Wind Energy Conference & Exhibition EWEC 2007, Milan, Italy, 7–10 May (2007) Google Scholar
  3. 3.
    Maalawi, K.Y., Badr, M.A.: A practical approach for selecting optimum wind rotors. Renew. Energy 28, 803–822 (2003) CrossRefGoogle Scholar
  4. 4.
    Méndez, J., Greiner, D.: Wind blade chord and twist angle optimization using genetic algorithms. In: Fifth International Conference on Engineering Computational Technology, Las Palmas de Gran Canaria, Spain, 12–15 September (2006) Google Scholar
  5. 5.
    Xudong, W., Shen, W.Z., Zhu, W.J., Sørensen, J.N., Jin, C.: Blade optimization for wind turbines. In: European Wind Energy Conference & Exhibition EWEC 2009, Marseille, France, 16–19 March (2009) Google Scholar
  6. 6.
    Jureczko, M., Pawlak, M., Mezyk, A.: Optimization of wind turbine blades. J. Mater. Process. Technol., 167, 463–471 (2005) Google Scholar
  7. 7.
    Laird, D.: NuMAD: blade structural analysis. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008) Google Scholar
  8. 8.
    Fuglsang, P., Madsen, H.A.: Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999) CrossRefGoogle Scholar
  9. 9.
    Fuglsang, L.: Integrated design of turbine rotors. In: European Wind Energy Conference & Exhibition EWEC 2008, Brussels, Belgium, 31 March–3 April (2008) Google Scholar
  10. 10.
    Anonymous. RotorOpt perfects rotor design. LM Glasfiber News Letter, September, p. 5 (2007) Google Scholar
  11. 11.
    Duineveld, N.P.: FOCUS5: an integrated wind turbine design tool. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008) Google Scholar
  12. 12.
    Jonkman, J.: NREL structural and aeroelastic codes. In: 2008 Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008) Google Scholar
  13. 13.
    Anonymous: Wind Turbine Generator Systems—Part 1: Safety Requirements, Ed. 2.0. International Standard IEC 61400-1 (1999) Google Scholar
  14. 14.
    Anonymous: Wind Turbines—Part 2: Design Requirements for Small Wind Turbines, Ed. 2.0. International Standard IEC 61400-2 (2006) Google Scholar
  15. 15.
    Manwell, J.F., Mc Gowan, J.G., Rogers, A.L.: Wind Energy Explained—Theory, Design and Application. Wiley, Chichester (2002) CrossRefGoogle Scholar
  16. 16.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001) MATHGoogle Scholar
  17. 17.
    Biava, M.: RANS Computations of Rotor/Fuselage Interactional Aerodynamics. Ph.D. thesis, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy (2007) Google Scholar
  18. 18.
    Simpson, T.W., Peplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17, 129–150 (2001) CrossRefMATHGoogle Scholar
  19. 19.
    Anonymous: Wind Turbine Generator System—Part 11: Acoustic Noise Measurement Techniques, Ed. 2.1. International Standard IEC 61400-11 (2006) Google Scholar
  20. 20.
    Anonymous: Guideline for the Certification of Wind Turbines, Ed. 2010. Germanischer Lloyd Industrial Services GmbH, Renewables Certification, Brooktorkai 18, 20457 Hamburg, Germany (2010) Google Scholar
  21. 21.
    Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part I, experimental. Int. J. Fatigue 24, 813–823 (2002) CrossRefGoogle Scholar
  22. 22.
    Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Int. J. Fatigue 24, 825–830 (2002) CrossRefGoogle Scholar
  23. 23.
    Anonymous: Matlab. The MathWorks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. www.mathworks.com
  24. 24.
    Anonymous: Noesis Optimus. Noesis Solutions NV, Interleuvenlaan 68, B-3001 Leuven, Belgium. www.noesissolutions.com
  25. 25.
    Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G.: Anisotropic beam theory and applications. Comput. Struct. 16, 403–413 (1983) CrossRefMATHGoogle Scholar
  26. 26.
    Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comp. Model. 33, 1113–1137 (2001) CrossRefMATHGoogle Scholar
  27. 27.
    Bottasso, C.L., Bauchau, O.A., Cardona, A.: Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J. Sci. Comput. 29, 397–414 (2007) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Peters, D.A., He, C.J.: Finite state induced flow models—Part II: three-dimensional rotor disk. J. Aircr. 32, 323–33 (1995) CrossRefGoogle Scholar
  29. 29.
    Powles, S.R.J.: The effects of tower shadow on the dynamics of a horizontal-axis wind turbine. Wind Eng. 7, 26–42 (1983) Google Scholar
  30. 30.
    Bottasso, C.L., Bauchau, O.A.: On the design of energy preserving and decaying schemes for flexible, nonlinear multibody systems. Comput. Methods Appl. Mech. Eng. 169, 61–79 (1999) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Bauchau, O.A., Bottasso, C.L., Trainelli, L.: Robust integration schemes for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 192, 395–420 (2003) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Bottasso, C.L., Croce, A., Riboldi, C.E.D., Nam, Y.: Power curve tracking in the presence of a tip speed constraint. Renew. Energy (2009, under review) Google Scholar
  33. 33.
    Bottasso, C.L., Croce, A.: Power curve tracking with tip speed constraint using LQR regulators. Scientific Report DIA-SR 09-04, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, March (2009) Google Scholar
  34. 34.
    Bottasso, C.L., Croce, A.: Advanced control laws for variable-speed wind turbines and supporting enabling technologies. Scientific Report DIA-SR 09-01, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy, January (2009) Google Scholar
  35. 35.
    Bottasso, C.L., Croce, A.: Cascading Kalman observers of structural flexible and wind states for wind turbine control. Scientific Report DIA-SR 09-02, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy, January (2009) Google Scholar
  36. 36.
    Bottasso, C.L., Campagnolo, F., Croce, A.: Development of a wind tunnel model for supporting research on aero-elasticity and control of wind turbines. In: 13th International Conference on Wind Engineering ICWE13, Amsterdam, The Netherlands (2011) Google Scholar
  37. 37.
    Althaus, D.: Profilpolaren Für Den Modellflug. Neckar-Verlag, Villingen-Schwenningen (1980) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanoItaly

Personalised recommendations