Advertisement

Multibody System Dynamics

, Volume 26, Issue 4, pp 367–395 | Cite as

Bipedal walking gait generation based on the Sequential Method of Analytical Potential (SMAP)

  • Anthony David
  • Olivier Bruneau
Article

Abstract

This paper presents a method we have called the Sequential Method of Analytical Potential (SMAP). By taking account of a system’s actual capabilities via Dynamic Propulsion Potentials (DPP), this method aims to generate dynamic walking gaits for bipedal robots. The objective is to move the robot by acting directly on the actuator forces. The various accelerations governing the movements of the robot are controlled by direct, precise modification of its own dynamic effects, taking account of the robot’s intrinsic dynamics as well as the capabilities of the actuators moving the joints.

Keywords

Biped robot Dynamic gait Dynamic propulsion potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: IEEE International Conference on Robotics and Automation (ICRA), May, Leuven, Belgium, pp. 1321–1326 (1998) Google Scholar
  2. 2.
    Hirai, K.: Current and future perspective of Honda humanoid robot. In: IEEE International Conference on Intelligent Robots and Systems (IROS), September, Grenoble, France, pp. 500–508 (1997) Google Scholar
  3. 3.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE International Conference on Intelligent Robots and Systems (IROS), October, Lausanne, Suisse, pp. 2478–2483 (2002) CrossRefGoogle Scholar
  4. 4.
    Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics plateform for HRP. In: IEEE International Conference on Intelligent Robots and Systems (IROS), September, Victoria, Canada, pp. 2431–2436 (1998) Google Scholar
  5. 5.
    Kaneko, K., Kanehiro, F., Kajita, S.: Humanoid robot HRP-2. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 1083–1090 (2004) Google Scholar
  6. 6.
    Kajita, S., Kaneko, K., Morisawa, M., Nakaoka, S., Hirukawa, H.: ZMP-based biped running enhanced by toe springs. In: IEEE International Conference on Robotics and Automation (ICRA), April, Rome, Italy, pp. 3963–3969 (2007) Google Scholar
  7. 7.
    Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko, K., Hirukawa, H.: Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In: IEEE International Conference on Robotics and Automation (ICRA), April, Rome, Italy, pp. 3989–3994 (2007) Google Scholar
  8. 8.
    Nagasaka, K., Kuroki, Y., Suzuki, S., Itoh, Y., Yamaguchi, J.: Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 3189–3194 (2004) Google Scholar
  9. 9.
    Kim, J.-Y., Park, I.-W., Lee, J., Kim, M.-S., Cho, B.-K., Oh, J.-H.: System design and dynamic walking of humanoid robot KHR-2. In: IEEE International Conference on Robotics and Automation (ICRA), April, Barcelona, Spain, pp. 1443–1448 (2005) Google Scholar
  10. 10.
    Kim, J.-H., Oh, J.-H.: Walking control of the humanoid plateform KHR-1 based on torque feedback control. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 623–628 (2004) Google Scholar
  11. 11.
    Ogura, Y., Akikawa, H., Lira, H., Takanishi, A.: Development of a human-like walking robot having two 7-DOF legs and a 2-DOF waist. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 134–139 (2004) Google Scholar
  12. 12.
    Lohmeier, S., Lffler, K., Gienger, M., Ulbrich, H., Pfeiffer, F.: Computer system and control of biped “Johnnie”. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 4222–4227 (2004) Google Scholar
  13. 13.
    Kagami, S., Nishiwaki, K., Kuffner, J.-J. Jr, Kuniyoshi, Y., Inaba, M., Inoue, H.: Online 3D vision, motion planning and biped locomotion control coupling system of humanoid robot: H7. In: IEEE International Conference on Intelligent Robots and Systems (IROS), August, Edmonton, Canada, pp. 2557–2562 (2005) Google Scholar
  14. 14.
    Schiehlen, W.: Energy-optimal design of walking machines. Multibody Syst. Dyn. 13(1), 129–141 (2005) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Pratt, J.E., Chew, C.-M., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001) CrossRefGoogle Scholar
  16. 16.
    Sabourin, C., Bruneau, O., Fontaine, J.-G.: Pragmatic rules for real-time control of the dynamic walking of an under-actuated biped robot. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 4216–4221 (2004) Google Scholar
  17. 17.
    Collins, S.H., Ruina, A.: A bipedal walking robot with efficient and human-like gait. In: IEEE International Conference on Robotics and Automation (ICRA), April, Barcelona, Spain, pp. 1983–1988 (2005) Google Scholar
  18. 18.
    Westervelt, E.R., Buche, G., Grizzle, J.W.: Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559–582 (2004) CrossRefGoogle Scholar
  19. 19.
    Canudas-de-Wit, C., Espiau, B., Urrea, C.: Orbital stabilization of underactuated mechanical systems. In: International Federation of Automatic Control (IFAC) 15th Triennial World Congress, July, Barcelona, Spain, pp. 75–82 (2002) Google Scholar
  20. 20.
    Bruneau, O., Ouezdou, F.-B., Fontaine, J.-G.: Dynamic walk of a bipedal robot having flexible feet. In: IEEE International Conference on Intelligent Robots and Systems (IROS), November, Maui, USA, pp. 512–517 (2001) Google Scholar
  21. 21.
    Chevallereau, C., Djoudi, D.: Underactuated planar robot controlled via a set of reference trajectories. In: International Conference on Climbing and Walking Robots (CLAWAR), September, Catania, Italy, pp. 535–542 (2003) Google Scholar
  22. 22.
    Bruneau, O., David, A.: Analytical approach for the generation of highly dynamic gaits for walking robots. In: IEEE International Conference on Intelligent Robots and Systems (IROS), October, Beijing, China, pp. 4453–4458 (2006) Google Scholar
  23. 23.
    Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudas-de-Wit, C., Grizzle, J.W.: RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.TEleRobotics & Applications (TERA)Istituto Italiano di Tecnologia (IIT) 2GenovaItaly
  2. 2.Laboratoire d’Ingénierie des Systèmes de Versailles (LISV)Université de Versailles St QuentinVelizyFrance

Personalised recommendations