Multibody System Dynamics

, Volume 27, Issue 1, pp 95–117 | Cite as

Leveraging parallel computing in multibody dynamics

  • Dan Negrut
  • Alessandro Tasora
  • Hammad Mazhar
  • Toby HeynEmail author
  • Philipp Hahn


At a time when sequential computing is limited to marginal year-to-year gains in speed, multi- and many-core architectures provide teraflop-grade performance to cost-conscious users. The ongoing shift to parallel computing spurs new research into solution methods that emphasize algorithmic concurrency. It also provides an opportunity to revisit complex real-life applications whose solutions have been until recently infeasible due to prohibitively heavy computational burdens. This paper concentrates on the use of commodity parallel computing in the field of multibody dynamics by illustrating how many-body frictional-contact dynamics, fluid–solid interaction analysis, and proximity computation have benefited from parallel computing. Preliminary results are encouraging and show one to two orders of magnitude reductions in simulation times. A set of open questions and final remarks round up the contribution.


Many-body dynamics Parallel computing GPU computing Fluid–solid interaction Collision detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anghileri, M., Castelletti, L., Tirelli, M.: Fluid–solid interaction of water filled tanks during the impact with the ground. Int. J. Impact Eng. 631(3), 235–253 (2005) CrossRefGoogle Scholar
  2. 2.
    Anitescu, M.: Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105(1), 113–143 (2006). doi: 10.1007/s10107-005-0590-7 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Methods Eng. 60(14), 2335–2371 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010). doi: 10.1007/s10589-008-9223-4 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85(11–14), 879–890 (2007) CrossRefGoogle Scholar
  7. 7.
    Benz, W.: Smooth particle hydrodynamics—a review. In: Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, vol. 1, p. 269 (1990) Google Scholar
  8. 8.
    Biggs, M., Roy, A., Hughes, C.: First principles treatment of boundary conditions in SPH (2007). Available online at
  9. 9.
    Bullet: The game physics library. Available online at (2011)
  10. 10.
    Groenenboom, P., Cartwright, B.: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method. J. Hydrodyn. Res. 48(1), 61–73 (2010) CrossRefGoogle Scholar
  11. 11.
    Hahn, P.: On the use of meshless methods in acoustic simulations. M.S. thesis, Department of Mechanical Engineering, University of Wisconsin-Madison. (2009)
  12. 12.
    Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems, vol. I. Prentice-Hall, Englewood Cliffs (1989) Google Scholar
  13. 13.
    Heyn, T.: Simulation of tracked vehicles on granular terrain leveraging GPU computing. M.S. thesis, Department of Mechanical Engineering, University of Wisconsin-Madison. (2009)
  14. 14.
    Hoberock, J., Bell, N.: Thrust: a parallel template library (2009). Available online at
  15. 15.
    Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (2009) zbMATHGoogle Scholar
  16. 16.
    Jackson, K., Fuchs, Y.: Comparison of ALE and SPH simulations of vertical drop tests of a composite fuselage section into water. In: Proceedings of the 10th International LS-DYNA Users Conference (2008) Google Scholar
  17. 17.
    Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy, N., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proceedings of ISCA 2010, Saint-Malo, France (2010) Google Scholar
  18. 18.
    Liu, G., Liu, M.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003) CrossRefzbMATHGoogle Scholar
  19. 19.
    Lotstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Manferdelli, J.: The many-core inflection point for mass market computer systems. CTWatch Q. 3(1), 11–17 (2007) Google Scholar
  21. 21.
    Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dyn. 26(1), 37–55 (2011). doi: 10.1007/s11044-011-9246-y CrossRefzbMATHGoogle Scholar
  22. 22.
    Kodama, Y. (ed.): Impact of CFD in ship hydrodynamics. In: Report of Group Discussion 1, 25th International Towing Tank Conference (2008) Google Scholar
  23. 23.
    Monaghan, J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Pang, J.S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73(2), 199–226 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pazouki, A.: A domain decomposition approach to fluid–solid interaction. Ph.D. thesis, Department of Mechanical Engineering, University of Wisconsin-Madison (2011, in preparation) Google Scholar
  26. 26.
    Pazouki, A., Mazhar, H., Negrut, D.: Parallel ellipsoid collision detection with application in contact dynamics-DETC2010-29073. In: Fukuda, S., Michopoulos, J.G. (eds.) Proceedings to the 30th Computers and Information in Engineering Conference, ASME International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE) (2010) Google Scholar
  27. 27.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) CrossRefzbMATHGoogle Scholar
  28. 28.
    SBEL: GPU-Cluster at the Simulation-Based Engineering Laboratory. University of Wisconsin-Madison (2010).
  29. 29.
    SBEL: Software at the Simulation-Based Engineering Laboratory. University of Wisconsin-Madison (2010).
  30. 30.
    Sengupta, S., Harris, M., Zhang, Y., Owens, J.: Scan primitives for GPU computing. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, p. 106. Eurographics Association, Geneve (2007) Google Scholar
  31. 31.
    Skaugen, K.: Petascale to exascale: extending intel’s HPC commitment. In: International Supercomputer Conference. Available online at (2010) Google Scholar
  32. 32.
    Stewart, D.E.: Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painleve’s problems. Arch. Ration. Mech. Anal. 145(3), 215–260 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Tasora, A.: Chrono::Engine, an open source physics–based dynamics simulation engine (2006). Available online at
  35. 35.
    Tasora, A.: A fast NCP solver for large rigid-body problems with contacts. In: Bottasso, C. (ed.) Multibody Dynamics: Computational Methods and Applications, pp. 45–55. Springer, Berlin (2008) Google Scholar
  36. 36.
    Tasora, A., Anitescu, M.: A convex complementarity approach for simulating large granular flows. J. Comput. Nonlinear Dyn. 5(3), 1–10 (2010). doi: 10.1115/1.4001371 Google Scholar
  37. 37.
    Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng. (2010). doi: 10.1016/j.cma.2010.06.030
  38. 38.
    Tasora, A., Negrut, D., Anitescu, M.: Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. J. Multibody Dyn. 222(4), 315–326 (2008) Google Scholar
  39. 39.
    Tasora, A., Negrut, D., Anitescu, M.: GPU-based parallel computing for the simulation of complex multibody systems with unilateral and bilateral constraints: an overview. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics. Computational Methods in Applied Sciences, vol. 23, pp. 283–307. Springer, Berlin (2011). doi: 10.1007/978-90-481-9971-6_14 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dan Negrut
    • 1
  • Alessandro Tasora
    • 2
  • Hammad Mazhar
    • 1
  • Toby Heyn
    • 1
    Email author
  • Philipp Hahn
    • 3
  1. 1.Simulation Based Engineering Lab, Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Industrial EngineeringUniversity of ParmaParmaItaly
  3. 3.Center of Mechanics, Institute of Mechanical SystemsETH ZurichZurichSwitzerland

Personalised recommendations