Multibody System Dynamics

, Volume 26, Issue 4, pp 469–487 | Cite as

Modelling and analysis of the dynamics of a tilting three-wheeled vehicle

  • Johannes Edelmann
  • Manfred PlöchlEmail author
  • Peter Lugner


To understand the handling behaviour of a three-wheeled tilting vehicle, models of the vehicle with different level of detail, corresponding to specific fields of investigation, have been developed. Then the proposed kinematics of the three-wheeler are assessed and optimized with respect to desired dynamic properties by applying a detailed multibody system model. The partially unstable nature of the motion of the vehicle suggests the application of an analytically derived, simplified model, to allow for focusing on stability aspects and steady-state handling properties. These investigations reveal the necessity of employing a steer-by-wire control system to support the driver by stabilizing the motion of the vehicle. Thus, an additional basic vehicle model is derived for control design, and an energy-efficient control strategy is presented. Numerical simulation results demonstrate the dynamic properties of the optimized kinematics and the control system, approved by successful test runs of a prototype.


Tilting vehicle Three wheeler Vehicle modelling Vehicle dynamics Handling behaviour Steer-by-wire Steering control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1., accessed in December 2009
  2. 2., accessed in December 2009
  3. 3.
    Hibbard, R., Karnopp, D.: Twenty first century transport system solutions—a new type of small, relatively tall and narrow active tilting commuter vehicles. Veh. Syst. Dyn. 25, 321–347 (1996) CrossRefGoogle Scholar
  4. 4.
    Snell, A.: An active roll-moment control strategy for narrow tilting commuter vehicles. Veh. Syst. Dyn. 29, 277–307 (1998) CrossRefGoogle Scholar
  5. 5.
    van Brink, C.R., Kroonen, H.M.: DVC—the banking technology driving the CARVER vehicle class. In: Proceedings of the 7th International Conference on Advanced Vehicle Control, Arnhem, The Netherlands (2004) Google Scholar
  6. 6.
    Drew, B., Edge, K., Barker, M., Darling, J., Owen, G.: System development for hydraulic tilt actuation of a tilting narrow vehicle. In: The Ninth Scandinavian International Conference on Fluid Power SICFP’05, Linköping, Sweden (2005) Google Scholar
  7. 7.
    Egan, P.: Lean machine—logic and substance from the dreamer’s workshop. Road Track 34(5), 80B–80D (1983) Google Scholar
  8. 8.
    Van Poelgeest, A., Edge, K.A., Darling, J.: Development of a steer tilt controller for a three wheeled tilting vehicle. Proc. ASME Int. Mech. Eng. Congr. Expo. 16, 149–156 (2008) Google Scholar
  9. 9.
    So, S.-G., Karnopp, D.: Active dual mode tilt control for narrow ground vehicles. Veh. Syst. Dyn. 27, 19–36 (1997) CrossRefGoogle Scholar
  10. 10.
    Kidane, S., Alexander, L., Rajamani, R., Starr, P., Donat, M.: A fundamental investigation of tilt control systems for narrow commuter vehicles. Veh. Syst. Dyn. 46, 295–322 (2008) CrossRefGoogle Scholar
  11. 11.
    Gohl, J., Rajamani, R., Alexander, L., Starr, P.: Active roll mode control implementation on a narrow tilting vehicles. Veh. Syst. Dyn. 42, 347–372 (2004) CrossRefGoogle Scholar
  12. 12.
    Gohl, J., Rajamani, R., Alexander, L., Starr, P.: The development of tilt-controlled narrow ground vehicles. In: Proceedings of the American Control Conference, Anchorage, AK, May 8–10, pp. 2540–2545 (2002) Google Scholar
  13. 13.
    Edelmann, J., Plöchl, M., Lugner, P.: A steer-by-wire control strategy for a tilting three-wheeled vehicle. In: Proceedings of the 21st International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD09), Stockholm, Sweden (2009) Google Scholar
  14. 14.
    Sharp, R.S.: Optimal linear time-invariant preview steering control for motorcycles. Veh. Syst. Dyn. 44, 329–340 (2006) CrossRefGoogle Scholar
  15. 15.
    Rulka, W.: SIMPACK—a computer program for simulation of large-motion multibody systems. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Berlin (1990) Google Scholar
  16. 16.
    ISO 8855, Road vehicles—Vehicle dynamics and road-holding ability – Vocabulary (1991) Google Scholar
  17. 17.
    Pacejka, H.B.: Tyre and Vehicle Dynamics. Butterworth/Heinemann, Oxford (2002) Google Scholar
  18. 18.
    MF-Tyre & MF-SWIFT 6.0 User Manual. TNO Automotive, The Netherlands (2005) Google Scholar
  19. 19.
    Lugner, P., Plöchl, M. (eds.): Tire model performance test (TMPT). Veh. Syst. Dyn. (Suppl.) 45 (2007) Google Scholar
  20. 20., accessed in December 2009
  21. 21.
    Reisinger, A.: Fahrzeugdynamische Analyse und Regelung eines 3-rädrigen Straßenfahrzeuges mit Neigetechnik. Diploma Theses, Vienna University of Technology (2006) Google Scholar
  22. 22.
    Sharp, R.S.: The stability and control of motorcycles. J. Mech. Eng. Sci. 13, 316–329 (1971) CrossRefGoogle Scholar
  23. 23.
    Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multibody Syst. Dyn. 12, 251–283 (2004) zbMATHCrossRefGoogle Scholar
  24. 24.
    Cossalter, V.: Motorcycle Dynamics, Race Dynamics (2002) Google Scholar
  25. 25.
    Koenen, C.: The dynamic behaviour of a motorcycle when running straight ahead and when cornering, Dissertation, Technische Hochschule, Delft (1983) Google Scholar
  26. 26.
    Kortüm, W., Lugner, P.: Systemdynamik und Regelung von Fahrzeugen. Springer, Berlin (1994) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Johannes Edelmann
    • 1
  • Manfred Plöchl
    • 1
    Email author
  • Peter Lugner
    • 1
  1. 1.Vehicle System Dynamics and Biomechanics, Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations