Multibody System Dynamics

, Volume 25, Issue 3, pp 285–312 | Cite as

Multi-body dynamics simulation of geometrically exact Cosserat rods



In this paper, we present a viscoelastic rod model that is suitable for fast and accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (‘stiff’ dof), bending and torsion (‘soft’ dof). For inner dissipation, a consistent damping potential proposed by Antman is chosen. We parametrise the rotational dof by unit quaternions and directly use the quaternionic evolution differential equation for the discretisation of the Cosserat rod curvature.

The discrete version of our rod model is obtained via a finite difference discretisation on a staggered grid. After an index reduction from three to zero, the right-hand side function f and the Jacobian f/(q,v,t) of the dynamical system \(\dot{q}=v\), \(\dot{v}=f(q,v,t)\) is free of higher algebraic (e.g. root) or transcendental (e.g. trigonometric or exponential) functions and, therefore, cheap to evaluate. A comparison with Abaqus finite element results demonstrates the correct mechanical behaviour of our discrete rod model. For the time integration of the system, we use well established stiff solvers like Radau5 or Daspk. As our model yields computational times within milliseconds, it is suitable for interactive applications in ‘virtual reality’ as well as for multi-body dynamics simulation.


Flexible multi-body dynamics Large deformations Finite rotations Constrained mechanical systems Structural dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antman, S.S.: Kirchhoff’s problem for nonlinearly elastic rods. Q. Appl. Math. 32, 221–240 (1974) MATHMathSciNetGoogle Scholar
  2. 2.
    Antman, S.S.: Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods. J. Nonlinear Sci. 6, 1–18 (1996) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005) MATHGoogle Scholar
  4. 4.
    Arnold, M.: Numerical methods for simulation in applied mechanics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Mechanics, pp. 191–246. Springer, Berlin (2008) CrossRefGoogle Scholar
  5. 5.
    Bauchau, O.A., Epple, A., Bottasso, C.L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. J. Comput. Nonlinear Dyn. 4(2), 021007 (2009) CrossRefGoogle Scholar
  6. 6.
    Bauchau, O.A., Trainelli, L.: The vectorial parametrization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bauchau, O.A., Epple, A., Heo, S.: Interpolation of finite rotations in flexible multi-body dynamics simulations. Proc. IME Multi-body Dyn. 222(4), 353–366 (2008) Google Scholar
  8. 8.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008) CrossRefGoogle Scholar
  9. 9.
    Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79(4), 444–473 (2009) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 365–389 (2002) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1755–1788 (2002) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bobenko, A.I., Suris, Y.B.: Discrete time Lagrangian mechanics on Lie groups with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cardona, A., Géradin, M.: A beam finite element nonlinear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2434 (1998) CrossRefGoogle Scholar
  14. 14.
    Cardona, A., Géradin, M.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New York (2001) Google Scholar
  15. 15.
    Cartan, H.: Differential Forms. Kershaw, Kershaw (1971), reprinted by Dover, 2006 MATHGoogle Scholar
  16. 16.
    Chouaieb, N., Maddocks, J.H.: Kirchhoff’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2004) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 68(1), 87–92 (1968) Google Scholar
  18. 18.
    Craig, R.R. Jr., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006) MATHGoogle Scholar
  19. 19.
    Craig, R.R. Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7) (1968) Google Scholar
  20. 20.
    Crisfield, M.A., Jelenic, G.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite element implementation. Proc. R. Soc. Lond. 455, 1125–1147 (1999) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dichmann, D.J., Maddocks, J.H.: An impetus-striction simulation of the dynamics of an elastica. J. Nonlinear Sci. 6, 271–292 (1996) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44(1), 1–23 (1992) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ebbinghaus, H.D., et al.: Numbers. Springer, Berlin (1992) Google Scholar
  24. 24.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Leipzig (1998) MATHGoogle Scholar
  25. 25.
    Hanson, A.J.: Visualizing Quaternions. Elsevier, Amsterdam (2005) Google Scholar
  26. 26.
    Hodges, D.H.: Nonlinear composite beam theory. Prog. Astronaut. Aeronaut. 213 (2006) Google Scholar
  27. 27.
    Hairer, E., Lubich, C., Roche, M.: The numerical solutions of differential-algebraic systems by Runge-Kutta methods. In: Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989) Google Scholar
  28. 28.
    Hairer, E., Noersett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993) MATHGoogle Scholar
  29. 29.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1996) MATHGoogle Scholar
  30. 30.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002) MATHGoogle Scholar
  31. 31.
    Ibrahimbegović, A.: On finite element implementations of geometrically nonlinear Reissner’s beam theory: three dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 112, 11–26 (1995) CrossRefGoogle Scholar
  32. 32.
    Ibrahimbegović, A., Frey, F.: Finite element analysis of linear and nonlinear planar deformations of elastic initially curved beams. Int. J. Numer. Methods Eng. 36, 3239–3258 (1992) CrossRefGoogle Scholar
  33. 33.
    Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. (2010). doi:10.1002/nme.2950. Preprint: Berichte des ITWM Nr. 183 (2010)
  34. 34.
    Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (1999) MATHGoogle Scholar
  35. 35.
    Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. A 355, 2117–2136 (1997) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. (Crelle) 56, 285–343 (1859) MATHGoogle Scholar
  37. 37.
    Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically exact rods. Appl. Numer. Math. (accepted) Preprint: Ber. ITWM Kaiserslautern, 179 (2009) Google Scholar
  39. 39.
    Lang, H., Linn, J.: Lagrangian field theory in space-time for geometrically exact Cosserat rods. Preprint: Ber. ITWM Kaiserslautern, 150 (2009) Google Scholar
  40. 40.
    Linn, J., Stephan, T., Carlsson, J., Bohlin, R.: Fast simulation of quasistatic cable deformations for Virtual Reality applications. In: Bonilla, L.L., et al. (eds.) Progress in Industrial Mathematics at ECMI 2006, pp. 247–253. Springer, Berlin (2007). Preprint: Ber. ITWM Kaiserslautern, 143 Google Scholar
  41. 41.
    Linn, J., Stephan, T.: Simulation of quasistatic deformations using discrete rod models. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Multibody Dynamics 2007, ECCOMAS Thematic Conference. Milano, Italy, 25–28 June 2007. Preprint: Ber. ITWM Kaiserslautern, 144 Google Scholar
  42. 42.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927), reprinted by Dover, 1944 MATHGoogle Scholar
  43. 43.
    Lubich, C.: Integration of stiff mechanical systems by Runge-Kutta methods. J. Appl. Math. Phys. 44, 1022–1053 (1993) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85, 311–354 (1984) MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: general modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Int. J. Numer. Methods Eng. 14, 1613–1626 (1967) CrossRefMathSciNetGoogle Scholar
  47. 47.
    Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems. Interscience Publishers, New York (1967) MATHGoogle Scholar
  48. 48.
    Nizette, M., Goriely, A.: Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40(6), 2830–2866 (1999) MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Petzold, L.R.: A description of DASSL: a differential algebraic system solver. In: Stepleman, R.S. (ed.) Scientific Computing. North-Holland, Amsterdam (1981) Google Scholar
  50. 50.
    Rabier, P.J., Rheinboldt, W.C.: Non-Holonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000) CrossRefGoogle Scholar
  51. 51.
    Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973) MATHGoogle Scholar
  52. 52.
    Romero, I.: The interpolation of rotations and its application to finite-element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004) MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2009) MathSciNetGoogle Scholar
  54. 54.
    Schiehlen, W.O.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997) MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Schiehlen, W., Eberhard, P.: Technische Dynamik. Modelle für Regelung und Simulation. Teubner, Leipzig (2004) MATHGoogle Scholar
  56. 56.
    Schwab, A.L., Meijaard, P.J.: How to draw Euler angles and utilize Euler parameters. In: Proceedings of IDETC/CIE (2008) Google Scholar
  57. 57.
    Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge (2005) Google Scholar
  59. 59.
    Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985) CrossRefGoogle Scholar
  60. 60.
    Simeon, B.: Numerical analysis of flexible multibody dynamics. Multibody Syst. Dyn. 6, 305–325 (2001) MATHCrossRefGoogle Scholar
  61. 61.
    Simo, J.C.: A finite strain beam formulation. The three dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985) MATHCrossRefGoogle Scholar
  62. 62.
    Simo, J.C., Vu-Quoc, L.: A three dimensional finite strain rod model. Part II. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986) MATHCrossRefGoogle Scholar
  63. 63.
    Spillmann, J., Teschner, M.: CoRdE. Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH, pp. 1–10 (2007) Google Scholar
  64. 64.
    Zupan, E., Maje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Fraunhofer Institute for Industrial MathematicsKaiserslauternGermany
  2. 2.Institute for MathematicsMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations