Advertisement

Multibody System Dynamics

, Volume 25, Issue 1, pp 81–95 | Cite as

Large-scale rigid body simulations

Article

Abstract

For decades, rigid body dynamics has been used in several active research fields to simulate the behavior of completely undeformable, rigid bodies. Due to the focus of the simulations to either high physical accuracy or real time environments, the state-of-the-art algorithms cannot be used in excess of several thousand to several ten thousand rigid bodies. Either the complexity of the algorithms would result in infeasible runtimes, or the simulation could no longer satisfy the real time aspects.

In this paper, we present a novel approach for massively parallel rigid body dynamics simulations. The presented algorithm enables rigid body simulations of more than one billion interacting rigid bodies on massively parallel supercomputers. We describe in detail the setup of large-scale rigid body simulations, the parallel rigid body algorithm and its communication infrastructure, and analyze the performance of the parallel algorithm by means of a particular simulation scenario.

Keywords

Rigid body dynamics Parallel algorithms Parallel programming Parallel frameworks Massively parallel Large-scale MPI Parallelization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Homepage of the Leibnitz Computing Center Munich: http://www.lrz-muenchen.de/services/compute/hlrb/hardware/hardware.html
  2. 2.
    Homepage of the Open Dynamics Engine (ODE): http://www.ode.org/
  3. 3.
    Homepage of the OpenTissue simulation framework: http://www.opentissue.org
  4. 4.
    Anitescu, M.: Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105(1), 113–143 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992) MATHGoogle Scholar
  6. 6.
    Eberly, D.: Game Physics. Series in Interactive 3D Technology. Morgan Kaufmann, San Mateo (2003) Google Scholar
  7. 7.
    Erleben, K., Sporring, J., Henriksen, K.: Physics-Based Animation. Delmar, 2005 Google Scholar
  8. 8.
    Fleissner, F., Eberhard, P.: Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisection. Int. J. Numer. Methods Eng. 74, 531–553 (2007) CrossRefGoogle Scholar
  9. 9.
    Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics. Springer, Berlin (2008) Google Scholar
  10. 10.
    Gropp, W., Skjellum, A., Lusk, E.: Using MPI: Portable Parallel Programming with the Message Passing Interface. 2nd edn. MIT Press, Cambridge (1999) Google Scholar
  11. 11.
    Iglberger, K., Thürey, N., Rüde, U.: Simulation of moving particles in 3D with the Lattice Boltzmann method. Computers Math. Appl. 55(7), 1461–1468 (2008) MATHCrossRefGoogle Scholar
  12. 12.
    Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kaufman, D.M., Edmunds, T., Pai, D.K.: Fast frictional dynamics for rigid bodies. ACM Trans. Graph. (SIGGRAPH 2005) 24, 946–956 (2005) CrossRefGoogle Scholar
  14. 14.
    Millington, I.: Game Physics Engine Development. Series in Interactive 3D Technology. Morgan Kaufmann, San Mateo (2007) Google Scholar
  15. 15.
    Preclik, T.: Iterative rigid multibody dynamics. Diploma thesis, Friedrich-Alexander University of Erlangen-Nuremberg, Computer Science 10: Systemsimulation. Computer Science Department 10 (System Simulation), University of Erlangen-Nuremberg (2008) Google Scholar
  16. 16.
    Renouf, M., Alart, P.: Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comput. Methods Appl. Mech. Eng. 194, 2019–2041 (2005) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tasora, A., Negrut, D., Anitescu, M.: Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit Proc. Inst. Mech. Eng. Part K, J. Multi-Body Dyn. 222(4), 315–326 (2008) Google Scholar
  18. 18.
    Wengenroth, H.: Rigid body collisions. Master’s thesis, University of Erlangen-Nuremberg, Computer Science 10: Systemsimulation. Computer Science Department 10 (System Simulation), University of Erlangen-Nuremberg (2007) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Chair for System SimulationUniversity of Erlangen-Nuremberg91058 ErlangenGermany

Personalised recommendations