Multibody System Dynamics

, Volume 24, Issue 1, pp 103–122 | Cite as

On the contact detection for contact-impact analysis in multibody systems



One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time-step integration algorithms are used and the preimpact dynamics does not involve high-frequencies, the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time-step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency, and its ability to deal with the transitions between non-contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.


Contact detection Contact-impact analysis Time integrators Integration error control Variable time step Multibody dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004) MATHCrossRefGoogle Scholar
  3. 3.
    Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementary systems in dynamics. Multibody Syst. Dyn. 13, 447–463 (2005) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004) MATHCrossRefGoogle Scholar
  6. 6.
    Najafabadi, S.A.M., Kövecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pfeifer, F., Glocker, C.: Multibody Dynamics with Unilateral Constraints. Wiley, New York (1996) CrossRefGoogle Scholar
  8. 8.
    Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006) MATHGoogle Scholar
  9. 9.
    Qiang, T., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009) Google Scholar
  10. 10.
    Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009) MATHCrossRefGoogle Scholar
  12. 12.
    Machado, M., Flores, F., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. (2010). doi:  10.1007/s11071-009-9608-7 Google Scholar
  13. 13.
    Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99–120 (2010) MATHCrossRefGoogle Scholar
  14. 14.
    Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. (2010). doi:  10.1007/s11071-009-9583-z Google Scholar
  15. 15.
    Erkaya, S., Uzmay, I.: Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst. Dyn. (2010). doi:  10.1007/s11044-010-9192-0 Google Scholar
  16. 16.
    Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng., Part-K, J. Multibody Dyn. 220(1), 21–34 (2006) Google Scholar
  18. 18.
    Han, I., Gilmore, B.J.: Multi body impact motion with friction analysis, simulation, and validation. J. Mech. Des. 115, 412–422 (1993) CrossRefGoogle Scholar
  19. 19.
    Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition deletion – I Theory. Mech. Mach. Theory 21, 401–406 (1986) CrossRefGoogle Scholar
  20. 20.
    Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 21, 37–54 (2009) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010) CrossRefGoogle Scholar
  23. 23.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. (2010). doi:  10.1007/s11071-009-9616-7 MATHGoogle Scholar
  25. 25.
    Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. (2010). doi:  10.1007/s11071-009-9580-2 MATHGoogle Scholar
  26. 26.
    Djerassi, A.: Collision with friction; Part B: Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21, 55–70 (2009) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lee, T.W., Wang, A.C.: On the dynamics of intermittent-motion mechanisms. Part 1 - Dynamic model and response. J. Mech. Transm. Autom. Des. 105, 534–540 (1983) CrossRefGoogle Scholar
  28. 28.
    Khulief, Y.A., Shabana, A.A.: Dynamic analysis of constrained system of Rigid and flexible bodies with intermittent motion. J. Mech. Transm. Autom. Des. 108, 38–45 (1986) CrossRefGoogle Scholar
  29. 29.
    Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22, 213–224 (1987) CrossRefGoogle Scholar
  30. 30.
    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004) CrossRefGoogle Scholar
  31. 31.
    Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008) MATHGoogle Scholar
  33. 33.
    Erickson, D., Weber, M., Sharf, I.: Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 22(1), 41–57 (2003) CrossRefGoogle Scholar
  34. 34.
    Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008) MATHCrossRefGoogle Scholar
  35. 35.
    Carsten, H., Wriggers, P.: An explicit multi-body contact algorithm. Proc. Appl. Math. Mech. 3, 280–281 (2003) CrossRefGoogle Scholar
  36. 36.
    Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Ebrahimi, S., Hippmann, G., Eberhard, P.: Extension of polygonal contact model for flexible multibody systems. Int. J. Appl. Math. Mech. 1, 33–50 (2005) Google Scholar
  38. 38.
    Ebrahimi, S., Eberhard, P.: A linear complementarity formulation on position level for frictionless impact of planar deformable bodies. ZAMM Z. Angew. Math. Mech. 86(10), 807–817 (2006) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. 75(3), 036710 (2007) Google Scholar
  40. 40.
    Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Engin. Comput. Int. J. Comput.-Aided Eng. Softw. 25(5), 432–442 (2008) CrossRefGoogle Scholar
  41. 41.
    Studer, C., Leine, R.I., Glocker, C.: Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int. J. Numer. Methods Eng. 76(11), 1747–1781 (2008) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Portal, R.J.F., Dias, J.M.P., Sousa, L.A.G.: Contact detection between convex superquadric surfaces on multibody dynamics. In: Arczewski, K., Frączek, J., Wojtyra, M. (eds.) Proceedings of the Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June–2 July 2009, 14 p Google Scholar
  43. 43.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990) CrossRefGoogle Scholar
  44. 44.
    Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001) MATHGoogle Scholar
  45. 45.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 0110071-10 (2008) Google Scholar
  46. 46.
    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994) Google Scholar
  47. 47.
    Dias, J.M.P., Pereira, M.S.: Dynamics of flexible mechanical systems with contact-impact and plastic deformations. Nonlinear Dyn. 8, 491–512 (1995) Google Scholar
  48. 48.
    Hunt, K.H., Crossley, F.R.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975) Google Scholar
  49. 49.
    Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52, 527–634 (1985) MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51, 321–341 (1998) CrossRefGoogle Scholar
  51. 51.
    Brogliato, B., Ten Dam, A.A., Paoli, L., Genot, F., Abadie, M.: Numerical simulations of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. 55, 107–150 (2002) CrossRefGoogle Scholar
  52. 52.
    Glocker, C., Pfeiffer, F.: Complementarity problems in multibody systems with planar friction. Arch. Appl. Mech. 63(7), 452–463 (1993) MATHGoogle Scholar
  53. 53.
    Pang, J., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73(2), 199–226 (1996) CrossRefMathSciNetGoogle Scholar
  54. 54.
    Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts. Philos. Trans. Math. Phys. Eng. Sci. 359(1789), 2575–2593 (2001) MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Pfeiffer, F.: The idea of complementarity in multibody dynamics. Arch. Appl. Mech. 72(11-12), 807–816 (2003) MATHGoogle Scholar
  56. 56.
    Signorini, A.: Sopra alcune questioni di elastostatica. In: Atti della Societa Italian per il Progresso della Scienza (1933) Google Scholar
  57. 57.
    Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends in Applications of Pure Mathematics to Mechanics, vol. 2, pp. 263–280. Pitman, London (1979) Google Scholar
  58. 58.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functionals. Birkhäuser, Basel (1985) Google Scholar
  59. 59.
    Kwak, B.M.: Complementarity problem formulation of three-dimensional frictional contact. J. Appl. Mech. 58, 134–140 (1991) MATHCrossRefGoogle Scholar
  60. 60.
    Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997) MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Autom. Control 48(6), 918–935 (2003) CrossRefMathSciNetGoogle Scholar
  62. 62.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) MATHGoogle Scholar
  63. 63.
    Hertz, H.: On the contact of solids – On the contact of rigid elastic solids and on hardness, (Translated by D.E. Jones and G.A. Schott), Miscellaneous Papers, pp. 146–183. Macmillan, London (1896) Google Scholar
  64. 64.
    Goldsmith, W.: Impact – the Theory and Physical Behaviour of Colliding Solids. Edward Arnold, London (1960) MATHGoogle Scholar
  65. 65.
    Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988) Google Scholar
  66. 66.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Neto, M.A., Ambrósio, J.: Stabilization methods for the integration of differential-algebraic equations in the presence of redundant constraints. Multibody Syst. Dyn. 10(1), 81–105 (2003) MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Gear, C.W.: Numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory CT-18, 89–95 (1982) Google Scholar
  69. 69.
    Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975) MATHGoogle Scholar
  70. 70.
    IMSL Math Library, Visual Numerics Inc., Huston, Texas (1997) Google Scholar
  71. 71.
    Matlab, Mathworks Inc., Natick, Massachusetts (2008) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departamento de Engenharia MecânicaUniversidade do MinhoGuimarãesPortugal
  2. 2.Departamento de Engenharia MecânicaInstituto Superior Técnico, IST/IDMECLisbonPortugal

Personalised recommendations