Multibody System Dynamics

, Volume 25, Issue 2, pp 145–165 | Cite as

Simulation of multibody systems with the use of coupling techniques: a case study

Article

Abstract

Simulation coupling (or cosimulation) techniques provide a framework for the analysis of decomposed dynamical systems with the use of independent numerical procedures for decomposed subsystems. These methods are often seen as very promising because they enable the utilization of the existing software for subsystem analysis and usually are easy to parallelize, and run in a distributed environment. For example, in the domain of multibody systems dynamics, a general setup for “Gluing Algorithms” was proposed by Wang et al. It was intended to provide a basis for multilevel distributed simulation environments. The authors presented an example where Newton’s method was used to synchronize the responses of subsystem simulators.

In this paper, we discuss some properties of a simplified iterative coupling scheme, where subsystems’ responses are synchronized at discrete time points. We use a simple multibody model to investigate the influence of synchronization parameters on computations. We also try to provide explanation to the oscillatory behavior of the solutions obtained from this method.

Keywords

Multibody dynamics Cosimulation Simulator coupling Distributed integration Gluing algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K.S., Duan, S.: Highly parallelizable low order dynamics simulation algorithm for multi-rigid-body systems. J. Guid. Control Dyn. 23(2), 355–364 (2000) CrossRefGoogle Scholar
  2. 2.
    Andrus, J.F.: Numerical solution of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16(4), 605–611 (1979). doi: 10.1137/0716045. URL http://link.aip.org/link/?SNA/16/605/1 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, M.: Multi-rate time integration for large scale multibody system models. In: IUTAM Symposium on Multiscale Problems in Multibody System Contacts, vol. 1, pp. 1–10 (2007) Google Scholar
  4. 4.
    Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part I: Open loop systems. Mech. Struct. Mach. 15(3), 383–393 (1987) CrossRefGoogle Scholar
  5. 5.
    Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part II: Closed loop systems. Mech. Struct. Mach. 15(4), 481–506 (1987) CrossRefGoogle Scholar
  6. 6.
    Bae, D.S., Kuhl, J.G., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics: Part III: Parallel processor implementation. Mech. Struct. Mach. 16(2), 249–269 (1988) CrossRefGoogle Scholar
  7. 7.
    Chawla, B.R., Gummel, H.K., Kozak, P.: MOTIS—an MOS timing simulator. IEEE Trans. Circuits Syst. cas-22(12), 901–910 (1975) CrossRefGoogle Scholar
  8. 8.
    Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log (n)) calculation of rigid-body dynamics. Part 1: Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999) CrossRefGoogle Scholar
  9. 9.
    Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log (n)) calculation of rigid-body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999) CrossRefGoogle Scholar
  10. 10.
    Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24(4), 484–502 (1984) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gear, C.W., Gupta, G.K., Leimkuhler, B.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12, 77–90 (1985) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems. In: Proceedings of the American Control Conference. Arlington, VA (2001) Google Scholar
  13. 13.
    Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. ASME J. Dyn. Syst., Meas. Control 126(1), 1–13 (2004) CrossRefGoogle Scholar
  14. 14.
    Gu, B., Gordon, W., Asada, H.H.: Co-simulation of coupled dynamic subsystems: A differential-algebraic approach using singularly perturbed sliding manifolds. In: Proceedings of the American Control Conference. Chicago, Illinois (2000) Google Scholar
  15. 15.
    Harchel, G.D., Sangiovanni-Vincentelli, A.L.: A survey of third-generation simulation techniques. In: Proceedings of the IEEE, vol. 69, pp. 1264–1280 (1981) Google Scholar
  16. 16.
    Hippmann, G., Arnold, M., Schittenhelm, M.: Efficient simulation of bush and roller chain drives. In: Multibody Dynamics 2005, ECCOMAS Thematic Conference. Madrid, Spain (2005) Google Scholar
  17. 17.
    Kim, S.S.: A subsystem synthesis method for efficient vehicle multibody dynamics. Multibody Syst. Dyn. 7, 189–207 (2002) MATHCrossRefGoogle Scholar
  18. 18.
    Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Syst. Syn. 4, 107–127 (2000) MATHCrossRefGoogle Scholar
  19. 19.
    Kübler, R., Schiehlen, W.: Virtual assembly of multibody systems. Stab. Control: Theory Appl. 3(3), 223–233 (2000) Google Scholar
  20. 20.
    Leimkuhler, B.: Estimating waveform relaxation convergence. SIAM. J. Sci. Comput. 14, 872–889 (1993) MATHMathSciNetGoogle Scholar
  21. 21.
    Leimkuhler, B.: Relaxation techniques in multibody dynamics. Trans. Can. Soc. Mech. Eng. 17(4A), 459–471 (1993) MathSciNetGoogle Scholar
  22. 22.
    Lelarasmee, E.: The waveform relaxation method for time domain analysis of large scale integrated circuits: Theory and applications. Ph.D. thesis (1982) Google Scholar
  23. 23.
    Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982) CrossRefGoogle Scholar
  24. 24.
    Schiehlen, W., Rükgauer, A., Schirle, T.: Force coupling versus differential algebraic description of constrained multibody systems. Multibody Syst. Dyn. 4, 317–340 (2000) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    The MathWorks, Inc.: MATLAB function reference Google Scholar
  26. 26.
    Tseng, F.C.: Multibody dynamics simulation in network-distributed environments. Ph.D. thesis (2000) Google Scholar
  27. 27.
    Tseng, F.C., Ma, Z.D., Hulbert, G.: Efficient numerical solution of constrained multibody dynamics systems. Comput. Methods Appl. Mech. Eng. 192, 439–472 (2003) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton (1996) Google Scholar
  29. 29.
    Wang, J., Ma, Z.D., Hulbert, G.: A gluing algorithm for distributed simulation of multibody systems. Nonlinear Dyn. 34, 159–188 (2003) MATHCrossRefGoogle Scholar
  30. 30.
    Wang, J., Ma, Z.D., Hulbert, G.: A distributed mechanical system simulation platform based on a “gluing algorithm”. J. Comput. Inf. Sci. Eng. 5, 71–76 (2005) CrossRefGoogle Scholar
  31. 31.
    Wang, J., Ma, Z.D., Hulbert, G.: Gluing for dynamic simulation of distributed mechanical systems. Adv. Comput. Multibody Syst. 5, 69–94 (2005) Google Scholar
  32. 32.
    Wells, D.R.: Multirate linear multistep methods for the solution of systems of ordinary differential equations. Ph.D. thesis, Champaign, IL, USA (1982) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.The Institute of Aeronautics and Applied MechanicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations