Multibody System Dynamics

, Volume 22, Issue 1, pp 69–95 | Cite as

A rotationless formulation of multibody dynamics: Modeling of screw joints and incorporation of control constraints

Article

Abstract

In the present work, a new energy-momentum conserving time-stepping scheme for multibody systems comprising screw joints is developed. In particular, it is shown that the underlying rotationless formulation of multibody dynamics along with a specific coordinate augmentation technique makes possible the energy-momentum discretization of the screw pair. In addition to that, control (or servo) constraints are treated within the rotationless framework of multibody dynamics. The control constraints are used to partially prescribe the motion of a multibody system. In particular, control constraints, in conjunction with the coordinate augmentation technique, make possible to solve inverse dynamics problems by applying the present simulation approach.

Keywords

Forward dynamics Differential-algebraic equations Coordinate augmentation Inverse dynamics Mechanical integrator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez, O., Simo, J.C.: On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Eng. 134, 197–222 (1996) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ibrahimbegović, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bottasso, C.L., Trainelli, L.: An attempt at the classification of energy decaying schemes for structural and multibody dynamics. Multibody Syst. Dyn. 12(2), 173–185 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lens, E., Cardona, A.: An energy preserving/decaying scheme for nonlinearly constrained multibody systems. Multibody Syst. Dyn. 18(3), 435–470 (2007) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody Syst. Dyn. 19(1–2), 45–72 (2008) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Betsch, P., Uhlar, S.: Energy-momentum conserving integration of multibody dynamics. Multibody Syst. Dyn. 17(4), 243–289 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Uhlar, S., Betsch, P.: Conserving integrators for parallel manipulators. In: Ryu, J.-H. (ed.) Parallel Manipulators, pp. 75–108. I-Tech Education and Publishing, Vienna (2008). Chap. 5, www.books.i-techonline.com Google Scholar
  10. 10.
    García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994) Google Scholar
  11. 11.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001) Google Scholar
  12. 12.
    Bauchau, O.A., Bottasso, C.L.: Contact conditions for cylindrical, prismatic, and screw joints in flexible multibody systems. Multibody Syst. Dyn. 5, 251–278 (2001) MATHCrossRefGoogle Scholar
  13. 13.
    Bottasso, C.L., Croce, A.: Optimal control of multibody systems using an energy preserving direct transcription method. Multibody Syst. Dyn. 12(1), 17–45 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: Theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    García de Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gonzalez, O.: Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration. Physica D 132, 165–174 (1999) MATHMathSciNetGoogle Scholar
  18. 18.
    Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng. 53, 2271–2304 (2002) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Greenspan, D.: Conservative numerical methods for \(\ddot{x}=f(x)\) . J. Comput. Phys. 56, 28–41 (1984) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Chair of Computational Mechanics, Department of Mechanical EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations