Advertisement

Multibody System Dynamics

, Volume 21, Issue 2, pp 167–192 | Cite as

Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links

  • Xuping Zhang
  • James K. Mills
  • William L. Cleghorn
Article

Abstract

Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler–Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links.

Keywords

Flexible manipulators Parallel manipulators Assumed mode method Coupling effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caracciolo, R., Richiedei, D., Trevisani, A.: Experimental validation of a model-based robust controller for multi-body mechanisms with flexible links. Multibody Syst. Dyn. 20, 129–145 (2008) CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Alam, M.S., Tokhi, M.O.: Designing feedforward command shapers with multi-objective genetic optimization for vibration control of a single-link flexible manipulator. Eng. Appl. Artif. Intell. 21(2), 229–246 (2008) CrossRefGoogle Scholar
  3. 3.
    Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators: A literature review. Mech. Mach. Theory 41, 749–777 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zohoor, H., Khorsandijou, S.M.: Dynamic model of a flying manipulator with two highly flexible links. Appl. Math. Model. 32, 2117–2132 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Shimizu, T., Sasaki, M., Okada, T.: Tip position control of a two links flexible manipulator based on the dynamic extension technique. In: SICE Annual Conference, pp. 868–873. Japan (2007) Google Scholar
  7. 7.
    Badlani, M., Midha, A.: Member initial curvature effects on the elastic slider-crank mechanism response. ASME J. Mech. Des. 104(1), 159–167 (1982) Google Scholar
  8. 8.
    Deü, J.F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86, 258–265 (2008) CrossRefGoogle Scholar
  9. 9.
    Cleghorn, W.L., Fenton, R.G., Tabarrok, B.: Finite element analysis of high-speed flexible mechanisms. Mech. Mach. Theory 16, 407–424 (1981) CrossRefGoogle Scholar
  10. 10.
    Bayo, E.: A fininte element approach to control the end-point motion of single-link flexible robot. J. Robot. Syst. 1, 63–75 (1987) CrossRefGoogle Scholar
  11. 11.
    Korayem, M.H., Heidari, A., Nikoobin, A.: Maximum allowable dynamic load of flexible mobile manipulators using finite element approach. Int. J. Manuf. Technol. 36, 1010–1021 (2008) CrossRefGoogle Scholar
  12. 12.
    Mohamed, Z., Tokhi, M.O.: Command shaping techniques for vibration control of flexible robot manipulator. Mechatronics 14, 69–90 (2004) CrossRefGoogle Scholar
  13. 13.
    Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002) CrossRefGoogle Scholar
  14. 14.
    Tso, S.K., Yang, T.W., Xu, W.L., Sun, Z.Q.: Vibration control for a flexible robot arm with deflection feedback. Int. J. Non-linear Mech. 38, 51–62 (2003) zbMATHCrossRefGoogle Scholar
  15. 15.
    Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multi-link manipulators. Int. J. Robot. Res. 14, 91–111 (1995) CrossRefGoogle Scholar
  16. 16.
    Loudini, M., Boukhetala, D., Tadjine, M.: Comprehensive mathematical modeling of a lightweight flexible link robot manipulator. Int. J. Model. Identif. Control 2(4), 313–321 (2007) CrossRefGoogle Scholar
  17. 17.
    Ahmad, M.A., Mohamed, Z., Hambali, N.: Dynamic modeling of a two-link flexible manipulator system incorporating payload. In: 3rd IEEE Conference on Industrial Electronics and Applications, pp. 96–101 (2008) Google Scholar
  18. 18.
    Turcic, D.A., Midha, A.: Generalized equations of motion for the dynamic analysis of elastic mechanism systems. ASME J. Dyn. Syst. Meas. Control 106(4), 243–248 (1984) zbMATHGoogle Scholar
  19. 19.
    Turcic, D.A., Midha, A.: Dynamic analysis of elastic mechanism systems. Part 2: Experimental results. ASME J. Dyn. Syst. Meas. Control 106(4), 249–254 (1984) zbMATHGoogle Scholar
  20. 20.
    Gasparetto, A.: On the modeling of flexible-link planar mechanisms: Experimental validation of an accurate dynamic model. ASME J. Dyn. Syst. Meas. Control 126, 365–375 (2004) CrossRefGoogle Scholar
  21. 21.
    Nagarajan, S., Turcic, D.A.: Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions. Part I: Element level equations. ASME J. Dyn. Syst. Meas. Control 112, 203–214 (1990) CrossRefGoogle Scholar
  22. 22.
    El-Absy, H., Shabana, A.A.: Coupling between rigid body and deformation modes. J. Sound Vib. 198(5), 617–637 (1996) CrossRefGoogle Scholar
  23. 23.
    Yang, Z., Sadler, J.P.: A one-pass approach to dynamics of high-speed machinery through three-node Lagrangian beam elements. Mech. Mach. Theory 34, 995–1007 (1999) zbMATHCrossRefGoogle Scholar
  24. 24.
    Karkoub, K., Yigit, A.S.: Vibration control of a four-bar mechanism with a flexible coupler link. J. Sound Vib. 222(2), 171–189 (1999) CrossRefGoogle Scholar
  25. 25.
    Luqris, U., Naya, M.A., Gonzalez, F., Cuadrado, J.: Performance and application criteria of two fast formulations for flexible multibody dynamics. Mech. Based Des. Struct. Mach. 35(4), 381–404 (2007) CrossRefGoogle Scholar
  26. 26.
    Huston, R.L.: Multibody structural dynamics including translation between the bodies. Comput. Struct. 12, 713–720 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Usuro, P.B., Nadira, R., Mahil, S.S.: A finite element/Lagrange approach to model lightweight flexible manipulators. ASME J. Dyn. Syst. Meas. Control 108, 198–205 (1986) CrossRefGoogle Scholar
  28. 28.
    Lee, H.H.: New dynamic modeling of flexible link robots. ASME J. Dyn. Syst. Meas. Control 127, 307–309 (2005) CrossRefGoogle Scholar
  29. 29.
    Vakil, M., Fotouhi, R., Nikiforuk, P.N., Salmasi, H.: A constrained Lagrange formulation of multilink planar flexible manipulator. ASME J. Vib. Acoust. 130, 1–16 (2008) CrossRefGoogle Scholar
  30. 30.
    Giovagnoni, M.: Dynamics of flexible closed-chain manipulator. ASME Des. Tech. Conf. 69(2), 483–490 (1992) Google Scholar
  31. 31.
    Lee, J.D., Geng, Z.: Dynamic model of a flexible Stewart platform. Comput. Struct. 48(3), 367–374 (1993) zbMATHCrossRefGoogle Scholar
  32. 32.
    Zhou, Z., Xi, J., Mechefske, C.K.: Modeling of a fully flexible 3PRS manipulator for vibration analysis. J. Mech. Des. 128, 403–412 (2006) CrossRefGoogle Scholar
  33. 33.
    Du, Z., Yu, Y., Zhang, X.: Dynamic modeling of planar flexible parallel manipulators. Chin. J. Mech. Eng. 43(9), 96–101 (2007) CrossRefGoogle Scholar
  34. 34.
    Kang, B.S., Mills, J.K.: Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20(3), 329–339 (2002) CrossRefGoogle Scholar
  35. 35.
    Zhang, X., Mills, J.K., Cleghorn, W.L.: Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links. J. Intell. Robot Syst. 50, 323–340 (2007) zbMATHCrossRefGoogle Scholar
  36. 36.
    Zhang, X., Mills, J.K., Cleghorn, W.L.: Study on the effect of elastic deformations on rigid body motions of a 3-PRR flexible parallel manipulator. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 1805–1810 (2007) Google Scholar
  37. 37.
    Kang, B.S., Chu, J., Mills, J.K.: Design of high speed planar manipulator and multiple simultaneous specification control. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 2723–2728. Seoul, Korea (2001) Google Scholar
  38. 38.
    Kroneis, J., Liu, S.: Flexible body modeling and vibration damping for a planar parallel robot using input shaping. In: IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (2007) Google Scholar
  39. 39.
    Siciliano, B., Book, W.: A singular perturbation approach to control of lightweight flexible manipulators. Int. J. Robot. Res. 17(4), 79–90 (1988) CrossRefGoogle Scholar
  40. 40.
    The Math Works, Inc.: Solve initial value problems for ordinary differential equations (ODEs), MATLAB Function Reference (1994–2005) Google Scholar
  41. 41.
    Ledesma, R., Bayo, E.: A non-recursive Lagrangian solution of the non-causal inverse dynamics of flexible multibody systems: The plane case. Int. J. Numer. Meth. Eng. 36, 2725–2741 (1993) zbMATHCrossRefGoogle Scholar
  42. 42.
    Mills, J.K., Goldenberg, A.A.: Force and position control of manipulators during constrained motion tasks. IEEE Trans. Robot. Autom. 5(1), 30–46 (1989) CrossRefGoogle Scholar
  43. 43.
    Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1993) Google Scholar
  44. 44.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Bayo, E., Jalon, G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988) zbMATHCrossRefGoogle Scholar
  46. 46.
    Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982) CrossRefGoogle Scholar
  47. 47.
    Varanasi, K.K., Nayfeh, S.A.: The dynamic of lead-screw drives: Low-order modeling and experiments. ASME J. Mech. Des. 126, 388–396 (2004) Google Scholar
  48. 48.
    Zhang, X., Mills, J.K., Cleghorn, W.L.: Effect of axial forces on lateral stiffness of a flexible 3-PRR parallel manipulator moving high-speed. In: IEEE International Conference on Information and Automation. Zhangjiajie, China (2008) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xuping Zhang
    • 1
  • James K. Mills
    • 1
  • William L. Cleghorn
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations