Multibody System Dynamics

, 20:177 | Cite as

Cluster computing of mechanisms dynamics using recursive formulation

Article

Abstract

This paper presents the O(n) recursive algorithm for forward dynamics of closed loop kinematic chains adapted to parallel computations on a cluster of workstations. The Newton–Euler equations of motion are formulated in terms of relative coordinates. Closed loop kinematic chains are transformed into open loop chains by cut joint technique. Cut joint constraint and Lagrange multipliers are introduced to complete the equations of motion. Constraint stabilization is performed using the Baumgarte stabilization technique with application to multibody systems with large number of degrees of freedom. Numerical simulations are carried out to study the influence of the degrees of freedom of the multibody system on computational efficiency of the algorithm using the Message Passing Interface (MPI). We also consider the ways of minimization of communication overhead which has significant impact on efficiency in case of cluster computing.

Keywords

Recursive algorithm Distributed computing Closed loop Constraint stabilization 

References

  1. 1.
    ADAMS 2007 r1 MSC Software Online Help (ADAMS/View, ADAMS/Solver) Google Scholar
  2. 2.
    Arczewski, K., Frączek, J.: Friction models and stress recovery methods in vehicle dynamics modelling. Multibody Syst. Dyn. 14, 205–224 (2005) MATHCrossRefGoogle Scholar
  3. 3.
    Anderson, K.S., Duan, S.: Highly parallelizable low–order dynamics simulation algorithm for multi–rigid–body systems. J. Guid. Control. Dyn. 23(2), 355–364 (2000) CrossRefGoogle Scholar
  4. 4.
    Anderson, K.S., Critchley, J.H.: Improved ‘Order-N’ performance algorithm for the simulation of constrained multi–rigid–body dynamic systems. Multibody Syst. Dyn. 9, 185–225 (2003) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Avello, A., Jimenez, J.M., Bayo, E., Jalon, J.G.: A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 107, 313–339 (1993) MATHCrossRefGoogle Scholar
  6. 6.
    Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part I: Open loop systems. Mech. Struct. Mach. 15, 359–382 (1987) CrossRefGoogle Scholar
  7. 7.
    Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part II: Closed loop systems. Mech. Struct. Mach. 15, 481–506 (1987) CrossRefGoogle Scholar
  8. 8.
    Bae, D.S., Kuhl, J.G., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part III: Parallel processor implementation. Mech. Struct. Mach. 16, 249–269 (1988) CrossRefGoogle Scholar
  9. 9.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bayo, E., de Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988) MATHCrossRefGoogle Scholar
  11. 11.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial–Value Problems in DAE. SIAM, Philadelphia (1989) Google Scholar
  12. 12.
    Chung, S., Haug, E.J.: Real-time simulation of multibody dynamics on shared memory multiprocessors. J. Dyn. Syst. Meas. Control 115, 627–637 (1993) MATHCrossRefGoogle Scholar
  13. 13.
    Critchley, J.H., Anderson, K.S.: A parallel logarithmic order algorithm for general multibody system dynamics. Multibody Syst. Dyn. 12, 75–93 (2004) MATHCrossRefGoogle Scholar
  14. 14.
    Critchley, J.H., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1, 181–200 (2000) CrossRefGoogle Scholar
  15. 15.
    Critchley, J.H., Binani, A., Anderson, K.S.: Design and implementation of an efficient multibody divide and conquer algorithm. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, Las Vegas, Nevada, USA (2007) Google Scholar
  16. 16.
    Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space–state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55–73 (2000) MATHCrossRefGoogle Scholar
  17. 17.
    Duan, S., Anderson, K.S.: Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system. Eng. Comput. 16, 96–108 (2000) MATHCrossRefGoogle Scholar
  18. 18.
    Eichberger, A.: Transputer-based multibody system dynamic simulation. Part I: The residual algorithm—a modified inverse dynamic formulation. Mech. Struct. Mach. 22(2), 211–237 (1994) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Eichberger, A.: Transputer-based multibody system dynamic simulation. Part II: Parallel implementation—results. Mech. Struct. Mach. 22(2), 239–261 (1994) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Rob. Res. 2, 13–30 (1983) CrossRefGoogle Scholar
  21. 21.
    Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Dordrecht (1987) Google Scholar
  22. 22.
    Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log (n)) calculation of rigid body dynamics. Part 1: Basic algorithm. Int. J. Rob. Res. 18, 867–875 (1999) CrossRefGoogle Scholar
  23. 23.
    Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log (n)) calculation of rigid body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Rob. Res. 18, 876–892 (1999) CrossRefGoogle Scholar
  24. 24.
    Featherstone, R., Fijany, A.: A technique for analyzing constrained rigid–body systems, and its application to the constraint force algorithm. IEEE Trans. Rob. Autom. 15(6), 1140–1144 (1999) CrossRefGoogle Scholar
  25. 25.
    Fijany, A., Bejczy, A.K.: Techniques for parallel computation of mechanical manipulator dynamics. Part II: Forward dynamics. Control Dyn. Syst. 40, 357–410 (1991) Google Scholar
  26. 26.
    Fijany, A., Sharf, I., D’Eleuterio, G.M.T.: Parallel O(log N) algorithms for computation of manipulator forward dynamics. IEEE Trans. Rob. Autom. 11, 389–400 (1995) CrossRefGoogle Scholar
  27. 27.
    Fisette, P., Peterkenne, J.M.: Contribution to parallel and vector computation in multibody dynamics. Parallel Comput. 24, 717–728 (1998) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison Wesley, Reading (2003) Google Scholar
  29. 29.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic, London (1986) Google Scholar
  30. 30.
    Guide to the SLATEC Common Mathematical Library, http://www.netlib.org/slatec
  31. 31.
    Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Needham Heights (1989) Google Scholar
  32. 32.
    Hwang, R.S., Bae, D.S., Kuhl, J.G., Haug, E.J.: Parallel processing for real-time dynamic system simulation. J. Mech. Des. 112, 520–528 (1990) CrossRefGoogle Scholar
  33. 33.
    Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14, 531–542 (1991) MATHCrossRefGoogle Scholar
  34. 34.
    Kasahara, H., Fujii, H., Iwata, M.: Parallel processing of robot motion simulation. In: Proceedings IFAC World Congress, Munich (1987) Google Scholar
  35. 35.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985) Google Scholar
  36. 36.
    Lathrop, R.: Parallelism in manipulator dynamics. Technical Report 754, MIT Artificial Intelligence Laboratory (1984) Google Scholar
  37. 37.
    Lee, C.S.G., Chang, P.R.: Efficient parallel algorithms for robot forward dynamics computation. IEEE Trans. Syst. Man Cybern. 18, 238–251 (1988) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Malczyk, P., Frączek, J.: Cluster computing of mechanisms dynamics using recursive formulation. In: Proceedings of the 12th World Congress in Mechanism and Machine Science, IFToMM 2007, Besancon, France (2007) Google Scholar
  39. 39.
    Saha, K.S., Schiehlen, W.: Recursive kinematics and dynamics for parallel structured closed-loop multibody systems. Mech. Struct. Mach. 29(2), 143–175 (2001) CrossRefGoogle Scholar
  40. 40.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge (1986) Google Scholar
  41. 41.
    Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. Dekker, New York (1996) Google Scholar
  42. 42.
    Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. ASME J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982) MATHGoogle Scholar
  43. 43.
    Wojtyra, M., Frączek, J.: Redundant constraints reactions in rigid MBS with coulomb friction in joints. In: Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2007, Milano, Italy (2007) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Aeronautics and Applied MechanicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations