Multibody System Dynamics

, Volume 20, Issue 2, pp 147–161 | Cite as

Implementation and efficiency of two geometric stiffening approaches

  • Urbano LugrísEmail author
  • Miguel A. Naya
  • José A. Pérez
  • Javier Cuadrado


When the modeling of flexible bodies is required in multibody systems, the floating frame of reference formulations are probably the most efficient methods available. In the case of beams undergoing high speed rotations, the geometric stiffening effect can appear due to geometric nonlinearities, and it is often not captured by the aforementioned methods, since it is common to linearize the elastic forces assuming small deformations. The present work discusses the implementation of different existing methods developed to consider such geometric nonlinearities within a floating frame of reference formulation in natural coordinates, making emphasis on the relation between efficiency and accuracy of the resulting algorithms, seeking to provide practical criteria of use.


Flexibility Efficiency Geometric stiffening Floating frame of reference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar
  2. 2.
    Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. AIAA J. 10(2), 131–151 (1987) Google Scholar
  3. 3.
    Mayo, J., Domínguez, J., Shabana, A.A.: Geometrically nonlinear formulations of beams in flexible multibody dynamics. J. Vib. Acoust. 117, 501–509 (1995) CrossRefGoogle Scholar
  4. 4.
    Mayo, J., García, D., Domínguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11(4), 321–341 (2004) zbMATHCrossRefGoogle Scholar
  5. 5.
    Sharf, I.: Geometrically non-linear beam element for dynamics simulation of multibody systems. Int. J. Numer. Methods Eng. 39, 763–786 (1996) zbMATHCrossRefGoogle Scholar
  6. 6.
    Shi, P., McPhee, J., Heppler, G.R.: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody Syst. Dyn. 5(1), 79–104 (2001) zbMATHCrossRefGoogle Scholar
  7. 7.
    Valembois, R.E., Fisette, P., Samin, J.C.: Comparison of various techniques for modelling flexible beams in multibody dynamics. Nonlinear Dyn. 12(4), 367–397 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1995) Google Scholar
  9. 9.
    García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, Berlin (1994) Google Scholar
  10. 10.
    Cuadrado, J., Gutiérrez, R., Naya, M.A., González, M.: Experimental validation of a flexible MBS dynamic formulation through comparison between measured and calculated stresses on a prototype car. Multibody Syst. Dyn. 11(2), 147–166 (2004) zbMATHCrossRefGoogle Scholar
  11. 11.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85(EM3), 67–94 (1959) Google Scholar
  12. 12.
    Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968) zbMATHGoogle Scholar
  13. 13.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001) Google Scholar
  14. 14.
    Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Urbano Lugrís
    • 1
    Email author
  • Miguel A. Naya
    • 1
  • José A. Pérez
    • 1
  • Javier Cuadrado
    • 1
  1. 1.University of La CoruñaFerrolSpain

Personalised recommendations