Advertisement

Multibody System Dynamics

, Volume 18, Issue 3, pp 323–344 | Cite as

Linear algebra and numerical algorithms using dual numbers

  • E. PennestrìEmail author
  • R. Stefanelli
Article

Abstract

Dual number algebra is a powerful mathematical tool for the kinematic and dynamic analysis of spatial mechanisms. With the purpose of exploiting new applications, in this paper are presented the dual version of some classical linear algebra algorithms. These algorithms have been tested for the position analysis of the RCCC mechanism and computational improvements over existing methods obtained.

Keywords

Dual numbers Kinematics and dynamics of spatial linkages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clifford, W.K.: Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 4(64), 381–395 (1873) Google Scholar
  2. 2.
    Dimentberg, F.M.: The screw calculus and its applications. Tech. Rep. AD 680993, Clearinghouse for Federal and Scientific Technical Information, VA, USA (1968) Google Scholar
  3. 3.
    Yang, A.T.: Displacement analysis of spatial five-link mechanisms using 3×3 matrices with dual elements. ASME J. Eng. Ind. 91(1), 152–157 (1969) Google Scholar
  4. 4.
    Yang, A.T.: Analysis of an offset unsymmetric gyroscope with oblique rotor using (3×3) matrices with dual-number elements. ASME J. Eng. Ind. 91(3), 535–542 (1969) Google Scholar
  5. 5.
    Keler, M.L.: Kinematics and statics including friction in single-loop mechanisms by screw calculus and dual vectors. ASME J. Eng. Ind. 95(2), 471–480 (1973) Google Scholar
  6. 6.
    Veldkamp, G.R.: On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics. Mech. Mach. Theory 11(2), 141–156 (1976) CrossRefGoogle Scholar
  7. 7.
    Study, E.: Geometrie der Dynamen. Teubner, Leipzig (1903) zbMATHGoogle Scholar
  8. 8.
    Yang, A.T.: Calculus of screws. In: Basic Questions of Design Theory. North-Holland, Amsterdam (1974) Google Scholar
  9. 9.
    Cheng, H.H.: Computation of dual numbers in the extended finite dual plane. In: Proc. of the 1993 ASME Design Automation Conference, 19–22 September 1993, pp. 73–80 (1993) Google Scholar
  10. 10.
    Cheng, H.H.: Numerical computations in the Ch programming language with applications in mechanisms and robotics. Parts I, II, III. In: Proc. of the Third National Conference on Mechanisms and Robotics, Cincinnati, OH, 8–10 November 1993 Google Scholar
  11. 11.
    Beyer, R.: Technische Raumkinematik. Springer, Berlin (1963) Google Scholar
  12. 12.
    Fischer, I.S.: Dual-Number Methods in Kinematics, Statics and Dynamics. CRC Press, Boca Raton (1999) Google Scholar
  13. 13.
    Denavit, J.: Displacement analysis of mechanisms on 2×2 matrices of dual numbers. VDI Ber. 29, 81–88 (1958) Google Scholar
  14. 14.
    Yang, A.T.: Application of quaternion algebra and dual numbers to the analysis of spatial mechanisms. PhD thesis, Columbia University (1963) Google Scholar
  15. 15.
    Fischer, I.S.: Modeling of plane joint. ASME J. Mech. Des. 121, 383–386 (1999) Google Scholar
  16. 16.
    Fischer, I.S., Paul, R.N.: Kinematic displacement analysis of a double-cardan-joint driveline. ASME J. Mech. Des. 113, 263–271 (1991) Google Scholar
  17. 17.
    Hall, A.S., Root, R.S., Sandgren, E.: A dependable method for solving matrix loop equations for the general three-dimensional mechanism. ASME J. Eng. Ind. 99, 547–550 (1977) Google Scholar
  18. 18.
    Fischer, I.: Numerical analysis of displacements in a tracta coupling. Eng. Comput. 15, 334–344 (1999) CrossRefGoogle Scholar
  19. 19.
    Uicker, J.J., Denavit, J., Hartenberg, R.S.: An iterative method for the displacement analysis of spatial mechanisms. ASME J. Appl. Mech., 309–314 (1964) Google Scholar
  20. 20.
    Yang, A.T.: Inertial force analysis of spatial mechanisms. ASME J. Eng. Ind. 93(1), 27–32 (1971) Google Scholar
  21. 21.
    Sugimoto, K., Duffy, J.: Application of linear algebra to screw systems. Mech. Mach. Theory 17(1), 73–83 (1982) CrossRefGoogle Scholar
  22. 22.
    Shoham, M., Brodsky, V.: Analysis of mechanisms by dual inertia operator. In: Computational Kinematics. Kluwer Academic, Netherlands (1993) Google Scholar
  23. 23.
    Yang, A.T., Freudenstein, F.: Application of dual number quaternions algebra to the analysis of spatial mechanisms. ASME J. Eng. Ind. 86, 300–308 (1964) MathSciNetGoogle Scholar
  24. 24.
    Wohlhart, K.: Motor tensor calculus. In: Merlet, J.P., Ravani, B. (eds.) Computational Kinematics, pp. 93–102. Kluwer Academic, Dordrecht (1995) Google Scholar
  25. 25.
    Brand, L.: Vector and Tensor Analysis. Wiley, New York (1947) zbMATHGoogle Scholar
  26. 26.
    Gonzáles-Palacios, M.A., Angeles, J.: Cam Synthesis. Kluwer Academic, Dordrecht (1993) Google Scholar
  27. 27.
    Gu, Y.-L., Luh, J.Y.S.: Dual-number transformations and its applications to robotics. IEEE J. Robot. Autom. RA-3, 615–623 (1987) Google Scholar
  28. 28.
    McCarthy, J.M.: Dual orthogonal matrices in manipulator kinematics. Int. J. Robot. Res. 5, 45–51 (1986) CrossRefGoogle Scholar
  29. 29.
    Duffy, J.: Analysis of Mechanisms and Robot Manipulators. Halstead, New York (1980) Google Scholar
  30. 30.
    Yaglom, I.M.: Complex Numbers in Geometry. Academic Press, New York (1968) Google Scholar
  31. 31.
    Pennock, G.R., Yang, A.T.: Application of dual-number matrices to the inverse kinematics problem of robot manipulators. ASME J. Mech. Transm. Autom. Des. 107, 201–208 (1985) Google Scholar
  32. 32.
    Pennock, G.R., Mattson, K.G.: Forward position problem of two puma-type robots manipulating a planar four-bar linkage payload. In: IEEE International Conference on Robotics and Automation, Minneapolis, MN, April 1996 Google Scholar
  33. 33.
    Cheng, H.H.: Programming with dual numbers and its applications in mechanisms design. Eng. Comput. 10(4), 212–229 (1994) CrossRefGoogle Scholar
  34. 34.
    Pennock, G.R., Yang, A.T.: Dynamic analysis of multi-rigid-body open-chain system. ASME J. Mech. Transm. Autom. Des. 105, 28–33 (1983) Google Scholar
  35. 35.
    Bagci, C.: Static force and torque analysis using 3×3 screw matrix, and transmission criteria for space mechanisms. ASME J. Eng. Ind. 93, 90–101 (1971) Google Scholar
  36. 36.
    Bagci, C.: Dynamic force and torque analysis for mechanisms using dual vectors and 3×3 screw matrix. ASME J. Eng. Ind. 94, 738–745 (1972) Google Scholar
  37. 37.
    Cheng, H.H., Thompson, S.: Dual iterative displacement analysis of spatial mechanisms using the Ch programming language. Mech. Mach. Theory 32(2), 193–207 (1997) CrossRefGoogle Scholar
  38. 38.
    Fischer, I.S., Chu, T.: Numerical analysis of displacements in multiloop mechanisms. Mech. Res. Commun. 28(2), 127–137 (2001) zbMATHCrossRefGoogle Scholar
  39. 39.
    Fischer, I.S.: Velocity analysis of mechanisms with ball joints. Mech. Res. Commun. 30, 69–78 (2003) zbMATHCrossRefGoogle Scholar
  40. 40.
    Fischer, I.S.: Numerical analysis of displacements in spatial mechanisms with ball joints. Mech. Mach. Theory 35, 1623–1640 (2000) zbMATHCrossRefGoogle Scholar
  41. 41.
    Gonzáles-Palacios, M.A., Angeles, J., Ranjbaran, F.: The kinematic synthesis of serial manipulators with prescribed Jacobian. In: IEEE International Conference on Robotics and Automation, vol. I, pp. 450–455 (1993) Google Scholar
  42. 42.
    Cheng, H.H., Thompson, S.: Dual polynomials and complex dual numbers for analysis of spatial mechanisms. In: Proceedings of the 1996 ASME 24th Mechanisms Conference, paper 96DETC-MECH-1221, ASME (1996) Google Scholar
  43. 43.
    Fischer, I.S., Freudensetin, F.: Internal force and moment transmission in a cardan joint with manufacturing tolerances. ASME J. Mech. Transm. Autom. Des. 106, 301–311 (1984) Google Scholar
  44. 44.
    Chen, C.K., Freudenstein, F.: Dynamic analysis of a universal joint with manufacturing tolerances. ASME J. Mech. Transm. Autom. Des. 108, 524–532 (1985) Google Scholar
  45. 45.
    Pennestrì, E., Vita, L.: Mechanical efficiency analysis of a cardan joint with manufacturing tolerances. In: Proc. of the RAAD03 12th International Workshop on Robotics in Alpe-Adria-Danube Region, Cassino, Italy, paper 053 (2003) Google Scholar
  46. 46.
    Pennestrì, E., Cavacece, M., Valentini, P.P., Vita, L.: Mechanical efficiency analysis of a cardan joint. In: Proc. of 2004 ASME Design Engineering Technical Conferences, Salt Lake City, Utah, paper DETC04/MECH-57317, ASME (2004) Google Scholar
  47. 47.
    Cavacece, M., Stefanelli, R., Valentini, P.P., Vita, L.: A multibody dynamic model of a Cardan joint with experimental validation. In: Goicolea J.M., Cuadrado J.C., Garcia Orden J. (eds.), Proc. of Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain (2005) Google Scholar
  48. 48.
    McCarthy, J.M.: Geometric Design of Linkages. Springer, Berlin (2000) zbMATHGoogle Scholar
  49. 49.
    Angeles, J.: The application of dual algebra to kinematic analysis. In: Angeles, J., Zakhariev, E. (eds.) Computational Methods in Mechanical Systems, pp. 3–32. Springer, Berlin (1991) Google Scholar
  50. 50.
    Wittenburg, J.: Dual quaternions in kinematics of spatial mechanisms. In: Haug, E.J. (ed.) Computer Aided Analysis and Optimization of Mechanical System Dynamics, pp. 129–145. Springer, Berlin (1984) Google Scholar
  51. 51.
    De Falco, D., Pennestrì, E.: The Udwadia–Kalaba formulation: a report on its numerical efficiency and on its teaching effectiveness. In: Proc. of the Multibody Dynamics 2005, ECCOMAS Thematic Conference (2005) Google Scholar
  52. 52.
    De Falco, D., Pennestrì, E., Vita, L.: Esperienze numeriche sulla formulazione di Udwadia–Kalaba. In: Atti Congresso AIMETA (2005) Google Scholar
  53. 53.
    Soni, A.H., Harrisberger, L.: Die Anwendung der 3×3 Schraubungs Matrix auf die kinematische und dynamische Analyze der raumlichen Getrieben. VDI Berichte, No. 127 (1968) Google Scholar
  54. 54.
    Hsia, L.M., Yang, A.T.: On the principle of transference in three dimensional kinematics. ASME J. Mech. Des. 103, 652–656 (1981) CrossRefGoogle Scholar
  55. 55.
    Agrawal, S.K.: Multibody dynamics: A formulation using Kane’s method and dual vectors. ASME J. Mech. Des. 115, 833–838 (1993) CrossRefGoogle Scholar
  56. 56.
    Moon, Y.-M., Kota, S.: Automated synthesis of mechanisms using dual-vector algebra. Mech. Mach. Theory 37, 143–166 (2002) zbMATHCrossRefGoogle Scholar
  57. 57.
    Azariadis, P., Aspragathos, N.: Computer graphics representation and transformation of geometric entities using dual unit vectors and line transformations. Comput. Graph. 25, 195–209 (2001) CrossRefGoogle Scholar
  58. 58.
    Teu, K., Kim, W.: Estimation of the axis of a screw motion from noisy data new method based on Plücker lines. J. Biomech. 39, 2857–2862 (2006) CrossRefGoogle Scholar
  59. 59.
    Potts, P.: A derivation of a minimal set of multilinear loop equations for spatial mechanisms. ASME J. Eng. Ind. 98, 1301–1305 (1976) Google Scholar
  60. 60.
    Ball, R.S.: Theory of Screws. Cambridge University Press, Cambridge (1900) Google Scholar
  61. 61.
    Rooney, J.: On the principle of transference. In: Proc. of the IV IFToMM Congress, New Castle Upon Tyne, UK, pp. 1089–1094 (1975) Google Scholar
  62. 62.
    Beggs, J.S.: Advanced Mechanisms. Macmillan, New York (1966) Google Scholar
  63. 63.
    Uicker, J.J., Denavit, J., Hartenberg, R.S.: An iterative method for the displacement analysis of spatial mechanisms. ASME J. Appl. Mech. 34, 309–314 (1964) Google Scholar
  64. 64.
    Schaaf, J.A., Ravani, B.: Geometry continuity of ruled surfaces. Comput. Aided Geom. Des. 15, 289–310 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Merlini, M., Morandini, M.: The helicoidal modeling in computational finite elasticity. Part I: Variational formulation. Int. J. Solids Struct. 41, 5351–5381 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996) zbMATHGoogle Scholar
  67. 67.
    Fasse, E.: Some applications of screw theory to lumped parameter modeling of visco-elastically coupled rigid bodies. In: Proc. of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball (Ball 2000), University of Cambridge, Trinity College (2000). citeseer.ist.psu.edu/fasse00some.html
  68. 68.
    Daniilidis, K.: Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 18, 286–298 (1999) CrossRefGoogle Scholar
  69. 69.
    Pennestrì, E.: Cinematica teorica. In: Cheli, F., Pennestrì, E. (eds.) Cinematica e Dinamica dei Sistemi Multibody, pp. 21–24. Casa Editrice Ambrosiana, Milano (2006) Google Scholar
  70. 70.
    Perez, A., McCarthy, J.M.: Bennet’s linkage and the cylindroid. Mech. Mach. Theory 37, 1245–1260 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Perez, A.: Analysis and design of Bennett linkages. Master thesis, University of California (1999) Google Scholar
  72. 72.
    Marcolongo, R.: Meccanica Razionale. Hoepli, Milano (1953) Google Scholar
  73. 73.
    Liu, T., Lee, T.W.: Dynamics of an overconstrained shaft coupling. ASME J. Mech. Transm. Autom. Des. 108, 497–502 (1986) Google Scholar
  74. 74.
    Perez, A., McCarthy, J.M.: Dimensional synthesis of Bennet linkage. In: Proceedings of 2000 ASME Design Technical Engineering Conferences, paper DETC2000/Mech-14069, ASME (2000) Google Scholar
  75. 75.
    Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Needham Hights (1989) Google Scholar
  76. 76.
    Trainelli, L., Croce, A.: A comprehensive view of rotation parametrization. 4th European Congress ECCOMAS 2004, Jyväskylä, Finland, 24–28 July 2004 Google Scholar
  77. 77.
    Wittenburg, J.: Duale quaternionen in der kinematik räumlicher getriebe. Eine anschauliche Darstellung, Archive of Appl. Mech. (Ingenieur Archiv) 51(1–2), 17–29 (1981) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria MeccanicaUniversità di Roma tor VergataRomaItaly

Personalised recommendations