Multibody System Dynamics

, Volume 18, Issue 2, pp 185–202 | Cite as

Convergence of the generalized-α scheme for constrained mechanical systems

  • Martin Arnold
  • Olivier Brüls


A variant of the generalized-α scheme is proposed for constrained mechanical systems represented by index-3 DAEs. Based on the analogy with linear multistep methods, an elegant convergence analysis is developed for this algorithm. Second-order convergence is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those theoretical results are illustrated by numerical tests.


DAEs Generalized-α method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical multibody systems. Appl. Numer. Math. 18, 37–56 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, M.: Simulation algorithms and software tools. In: Mastinu, G., Plöchl, M. (eds.) Road and Off-road Vehicle System Dynamics Handbook. Taylor & Francis, London (2007, in preparation) Google Scholar
  3. 3.
    Bottasso, C., Dopico, D., Trainelli, L.: On the optimal scaling of index three DAEs in multibody dynamics. In: Proc. of the European Conference on Computational Mechanics (ECCOMAS-ECCM), Lisbon, Portugal (2006) Google Scholar
  4. 4.
    Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996) zbMATHGoogle Scholar
  5. 5.
    Bruls, O., Arnold, M.: The generalized-α scheme as a multistep integrator: Towards a general mechatronic simulator. In: Proc. of the IDETC/MSNDC Conference, Las Vegas, USA (2007) Google Scholar
  6. 6.
    Bruls, O., Golinval, J.C.: The generalized-α method in mechatronic applications. Z. Angew. Math. Mech. (ZAMM) 86, 748–758 (2006) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bruls, O., Golinval, J.C.: On the numerical damping of time integrators for coupled mechatronic systems. Comput. Meth. Appl. Mech. Eng. (2006), accepted for publication Google Scholar
  8. 8.
    Cardona, A., Géradin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33, 801–820 (1989) zbMATHCrossRefGoogle Scholar
  9. 9.
    Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME J. Appl. Mech. 60, 371–375 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-α method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001) Google Scholar
  12. 12.
    Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I—Nonstiff Problems, 2nd edn. Springer, New York (1993) zbMATHGoogle Scholar
  13. 13.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II—Stiff and Differential-Algebraic Problems, 2nd edn. Springer, New York (1996) zbMATHGoogle Scholar
  14. 14.
    Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977) CrossRefGoogle Scholar
  15. 15.
    Jay, L., Negrut, D.: Extensions of the HHT-method to differential-algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and α-methods. Z. Angew. Math. Mech. (ZAMM) 86(10), 772–784 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In: Goicolea, J., Cuadrado, J., García Orden, J. (eds.) Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Dynamics, Madrid, Spain (2005) Google Scholar
  18. 18.
    Newmark, N.: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94 (1959) Google Scholar
  19. 19.
    Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.NWF III—Institute of MathematicsMartin Luther University Halle–WittenbergHalle (Saale)Germany
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of LiègeLiègeBelgium

Personalised recommendations