Multibody System Dynamics

, Volume 17, Issue 4, pp 243–289 | Cite as

Energy-momentum conserving integration of multibody dynamics

Article

Abstract

A rotationless formulation of multibody dynamics is presented, which is especially beneficial to the design of energy-momentum conserving integration schemes. The proposed approach facilitates the stable numerical integration of the differential algebraic equations governing the motion of both open-loop and closed-loop multibody systems. A coordinate augmentation technique for the incorporation of rotational degrees of freedom and associated torques is newly proposed. Subsequent to the discretization, size-reductions are performed to lower the computational costs and improve the numerical conditioning. In this connection, a new approach to the systematic design of discrete null space matrices for closed-loop systems is presented. Two numerical examples are given to evaluate the numerical properties of the proposed algorithms.

Keywords

Conserving time integration Constrained mechanical systems Multibody dynamics Differential-algebraic equations Parallel manipulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems, 2nd edn. Springer-Verlag, Germany (2003)Google Scholar
  2. 2.
    Armero, F.: Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity. Comput. Methods Appl. Mech. Eng. 195, 4862–4889 (2006)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bauchau, O.A., Bottasso, C.L.: On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems. Comput. Methods Appl. Mech. Eng. 169, 61–79 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194(50–52), 5159–5190 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Betsch, P.: On the discretization of geometrically exact shells for flexible multibody dynamics. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics (on CD), pp. 1–13, Madrid, Spain, 21–24 June 2005Google Scholar
  7. 7.
    Betsch, P.: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints. Comput. Methods Appl. Mech. Eng. 195, 7020–7035 (2006)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Methods Eng. 67(4), 499–552 (2006)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part II: Time-stepping schemes for nonlinear elastodynamics. Int. J. Numer. Methods Eng. 50, 1931–1955 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng. 53, 2271–2304 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Betsch, P., Steinmann, P.: A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 367–391 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bottasso, C.L., Croce, A.: Optimal control of multibody systems using an energy preserving direct transcription method. Multibody Syst. Dyn. 12(1), 17–45 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Brank, B., Briseghella, L., Tonello, N., Damjanic, F.B.: On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm for a finite rotation shell model. Int. J. Numer. Methods Eng. 42, 409–442 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Crisfield, M.A., Jelenić, G.: Energy/momentum conserving time integration procedures with finite elements and large rotations. In: NATO-ARW on Compuational Aspects of Nonlinear Structures and Systems with Large Rigid Body Motion, Ambrósio, J., Kleiber, M. (eds.), pp. 181–200, Pultusk, Poland, 2–7 July 2000Google Scholar
  16. 16.
    Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56, 309–327 (1986)MATHCrossRefGoogle Scholar
  17. 17.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)Google Scholar
  18. 18.
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)MATHGoogle Scholar
  19. 19.
    Goicolea, J.M., Garcia Orden, J.C.: Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Comput. Methods Appl. Mech. Eng. 188, 789–804 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)MATHMathSciNetGoogle Scholar
  21. 21.
    Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Physica D 132, 165–174 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gonzalez, O., Simo, J.C.: On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Eng. 134, 197–222 (1996)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Greenspan, D.: Conservative numerical methods for x=f(x). J. Comput. Phys. 56, 28–41 (1984)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Groş, M., Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes. Int. J. Numer. Methods Eng. 63, 1849–1897 (2005)CrossRefGoogle Scholar
  25. 25.
    Ibrahimbegović, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Khan, W.A., Krovi, V.N., Saha, S.K., Angeles, J.: Modular and recursive kinematics and dynamics for parallel manipulators. Multibody Syst. Dyn. 14(3–4), 419–455 (2005)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. European Mathematical Society, Zürich, Switzerland (2006)Google Scholar
  28. 28.
    Laursen, T.A., Love, G.R.: Improved implicit integrators for transient impact problems — geometric admissibility withing the conserving framework. Int. J. Numer. Methods Eng. 53, 245–274 (2002)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge, UK (2004)MATHGoogle Scholar
  30. 30.
    Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. To appear in Multibody Syst. Dyn.Google Scholar
  31. 31.
    Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems — a comparison of approaches. Comput. Mech. 33(3), 174–185 (2004)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mohammadi Daniali, H.R., Zsombor-Murray, P.J., Angeles, J.: Singularity analysis of planar parallel manipulators. Mech. Mach. Theory 30(5), 665–678 (1995)CrossRefGoogle Scholar
  33. 33.
    Puso, M.A.: An energy and momentum conserving method for rigid-flexible body dynamics. Int. J. Numer. Methods Eng. 53, 1393–1414 (2002)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54, 1683–1716 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)MATHGoogle Scholar
  36. 36.
    Rubin, H., Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math. 10(1), 65–87 (1957)MATHMathSciNetGoogle Scholar
  37. 37.
    Saha, S.K.: Dynamics of serial multi-body systems using the decoupled natural orthogonal complement matrices. ASME J. Appl. Mech. 66, 986–996 (1999)CrossRefGoogle Scholar
  38. 38.
    Saha, S.K., Schiehlen, W.O.: Recursive kinematics and dynamics for parallel structured closed loop multibody systems. Mech. Struct. Mach. 29(2), 143–175 (2001)CrossRefGoogle Scholar
  39. 39.
    Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. (ZAMP) 43, 757–792 (1992)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100, 63–116 (1992)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31, 19–52 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Chair of Computational Mechanics, Department of Mechanical EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations