Multibody System Dynamics

, Volume 16, Issue 1, pp 73–102

Task-level approaches for the control of constrained multibody systems

Article

Abstract

This paper presents a task-level control methodology for the general class of holonomically constrained multibody systems. As a point of departure, the general formulation of constrained dynamical systems is reviewed with respect to multiplier and minimization approaches. Subsequently, the operational space framework is considered and the underlying symmetry between constrained dynamics and operational space control is discussed. Motivated by this symmetry, approaches for constrained task-level control are presented which cast the general formulation of constrained multibody systems into a task space setting using the operational space framework. This provides a means of exploiting task-level control structures, native to operational space control, within the context of constrained systems. This allows us to naturally synthesize dynamic compensation for a multibody system, that properly accounts for the system constraints while performing a control task. A set of examples illustrate this control implementation. Additionally, the inclusion of flexible bodies in this approach is addressed.

Keywords

Task-level control Constrained multibody dynamics Operational space Null space Flexible/rigid multibody system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajodah, A.H., Hodges, D.H., Chen, Y.: Inverse Dynamics of Servo-Constraints Based on the Generalized Inverse. Nonlinear Dynamics 39, 179–196 (2005)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Blajer, W.: A Geometric Unification of Constrained System Dynamics. Multibody System Dynamics 1, 3–21 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Blajer, W., Kolodziejczyk, K.: A Geometric Approach to Solving Problems of Control Constraints: theory and a DAE Framework. Multibody System Dynamics 11, 343–364 (2004)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bruyninckx, H., Khatib, O.: Gauss' Principle and the Dynamics of Redundant and Constrained Manipulators. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 3, 2563–2568. San Francisco, April (2000)Google Scholar
  5. 5.
    Chang, K.-S., Holmberg, R., Khatib, O.: The Augmented Object Model: Cooperative Manipulation and Parallel Mechanism Dynamics. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation 1, 470–475, San Francisco, April (2000)Google Scholar
  6. 6.
    Craig, J.J.: Introduction to Robotics: mechanics and control, 3rd ed., Upper Saddle River NJ: Prentice Hall (2004)Google Scholar
  7. 7.
    De Sapio, V.: Some Approaches for Modeling and Analysis of a Parallel Mechanism with Stewart Platform Architecture. In Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition MED-8, 637–649, Anaheim CA, November 7, (1998)Google Scholar
  8. 8.
    De Sapio, V., Khatib, O.: Operational Space Control of Multibody Systems with Explicit Holonomic Constraints. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation 1, 470–475, Barcelona, April (2005)Google Scholar
  9. 9.
    Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 757–767 (1990)CrossRefGoogle Scholar
  10. 10.
    Featherstone, R.: Robot Dynamics Algorithms, 1st ed., New York: Kluwer (1987)Google Scholar
  11. 11.
    Gauss, K.F.: Über ein neues allgemeines Grundgesetz der Mechanik (On a New Fundamental Law of Mechanics). Journal für die Reine und Angewandte Mathematik 4, 232–235 (1829)MATHCrossRefGoogle Scholar
  12. 12.
    Gibbs, J.W.: On the Funfamental Formulae of Dynamics. American Journal of Mathematics 2, 49–64 (1879)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Harary, F.: Graph Theory, 1st ed., Reading MA: Perseus (1969)Google Scholar
  14. 14.
    Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control. Annals of Biomedical Engineering 33(6), 829–840 (2005)CrossRefGoogle Scholar
  15. 15.
    Hughes, T.J.R.: The Finite Element Method: linear Static and Dynamic Finite Element Analysis, reprint, New York: Dover (2000)Google Scholar
  16. 16.
    Huston, R.L., Liu, C.Q., Li, F.: Equivalent Control of Constrained Multibody Systems. Multibody System Dynamics 10(3), 313–321 October (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Jungnickel, U.: Differential-Algebraic Equations in Riemannian Spaces and Applications to Multibody System Dynamics. ZAMM 74(9), 409–415 (1994)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Kane, T., Levinson, D.: Dynamics: Theory and Applications. 1st ed., New York: McGraw-Hill (1985)Google Scholar
  19. 19.
    Khatib, O.: A Unified Approach to Motion and Force Control of Robot Manipulators: the Operational Space Formulation. International Journal of Robotics Research 3(1), 43–53 (1987)Google Scholar
  20. 20.
    Khatib, O.: Inertial Properties in Robotic Manipulation: an Object Level Framework. International Journal of Robotics Research 14(1), 19–36 February (1995)CrossRefGoogle Scholar
  21. 21.
    Kübler, L., Eberhard, P., Geisler, J.: Flexible Multibody Systems with Large Deformations using Absolute Nodal Coordinates for Isoparametric Solid Brick Elements. In Proceedings of the 2003 ASME Design Engineering Technical Conference September (2003)Google Scholar
  22. 22.
    Kübler, L., Eberhard, P., Geisler, J.: Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates. Nonlinear Dynamics, 34(1–2), 31–52 (2003)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Lanczos, C.: The Variational Principles of Mechanics. 4th ed., New York: Dover (1986)Google Scholar
  24. 24.
    Lenarčič, J., Stanišić, M.M.: A Humanoid Shoulder Complex and the Humeral Pointing Kinematics. IEEE Transactions on Robotics and Automation 19(3), 499–506 June (2003)CrossRefGoogle Scholar
  25. 25.
    Lilly, K.W.: Efficient Dynamic Simulation of Robotic Mechanisms, 1st ed., Boston: Kluwer (1993)MATHGoogle Scholar
  26. 26.
    Liu, Y.-H., Arimoto, S., Kitagaki, K.: Adaptive control for holonomically constrained robots: time-invariant and time-variant cases. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation 1, 905–912, Nagoya, Japan May (1995)Google Scholar
  27. 27.
    Liu, Y.-H., Kitagaki, K., Ogasawara, T., Arimoto, S.: Model-based adaptive hybrid control for manipulators under multiple geometric constraints . IEEE Transactions on Robotics and Automation 7(1), 97–109 January (1999)Google Scholar
  28. 28.
    Moon, F.: Applied dynamics. 1st ed., New York: John Wiley and Sons (1998)MATHGoogle Scholar
  29. 29.
    Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems for Engineers. Physicists, and Mathematicians, Oxford university Press (2002)Google Scholar
  30. 30.
    Pars, L.A.: A Treatise on Analytical Dynamics. reprint, Woodbridge CT: Ox Bow Press (1979)Google Scholar
  31. 31.
    Russakow, J., Khatib, O., Rock, S.M.: Extended Operational Space Formulation for Serial-to-Parallel Chain (Branching) Manipulators. In Proceedings of the the 1995 IEEE International Conference on Robotics and Automation 1, 1056–1061, Nagoya, Japan, May (1995)Google Scholar
  32. 32.
    Shabana, A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dynamics 16(3), 293–306 July (1998)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Schiehlen, W.: Energy-Optimal Design of Walking Machines. Multibody System Dynamics 13(1), 129–141 February (2005)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: a New Approach. 1st ed., Cambridge: Cambridge Uinversity Press (1996)Google Scholar
  35. 35.
    von Schwerin, R.: Multibody System Simulation. 1st ed., Berlin: Springer (1999)MATHGoogle Scholar
  36. 36.
    Wehage, R.A., Haug, E.J.: Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems. Journal of Mechanical Design 104(1), 247–255 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory, Computer Science DepartmentStanford UniversityStanfordUSA
  2. 2.Neuromuscular Biomechanics Laboratory, Mechanical Engineering & Bioengineering DepartmentsStanford UniversityStanfordUSA

Personalised recommendations