Advertisement

Experimental study on the mechanical properties of short-term creep in post-peak rupture damaged sandstone

  • Shuang-jian Niu
  • Wen-lin Feng
  • Jin YuEmail author
  • Chun-sheng Qiao
  • Sheng-xiang Liu
  • Yong-biao Sun
Article
  • 10 Downloads

Abstract

The creep of rock is a slow stress adjustment deformation and an evolutional process of rock mass destruction. Therefore, rock creep plays a vital role in a variety of rock engineering. To reveal the creep properties of rock, the following work has been done. A series of triaxial creep tests has been conducted considering different low confining pressures. The creep curve is analyzed under different confining pressures, and the creep law of each stage is obtained. Many results were obtained for the influence of confining pressure on the instantaneous modulus of deformation, creep strain, creep rate and instantaneous strain. The proportion of the various stages of creep changes under different confining pressure. Due to the existence of confining pressure, the ultimate failure method of rock has also been affected. Creep data can then be fitted by the improved Nishihara model, revealing a good relationship. The conclusion of this paper can provide some significant guidance for rock engineering.

Keywords

Rupture-damaged sample Decelerating creep Steady creep Instantaneous elastic moduli Instantaneous strain Creep deformation 

Notes

Acknowledgements

Projects (51304068, 51478031, 51774147) supported by the National Natural Science Foundation of China; Project (2018M632574) supported by the China Postdoctoral Science Foundation. Project (17FTUE03) supported by the Fujian Research Center for Tunnelling and Urban Underground Space Engineering (Huaqiao University), China. The authors are grateful to the editor and reviewer for discerning comments on this paper.

References

  1. Brantut, N., Heap, M.J., Meredith, P.G., Baud, P.: Time-dependent cracking and brittle creep in crustal rocks: a review. J. Struct. Geol. 52(4), 17–43 (2013).  https://doi.org/10.1016/j.jsg.2013.03.007 CrossRefGoogle Scholar
  2. Brown, E.T.: The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, R. Ulusay (Ed.), Springer International Publishing, Cham, Switzerland (2015), p. 293, (83.29€. ISBN 978-3-319-07712-3 (Hbk), 978-3-319-07713-0 (eBook)). Eng. Geol. 199(14), 165–166 (2015).  https://doi.org/10.1016/j.enggeo.2015.10.010 CrossRefGoogle Scholar
  3. Chen, G.Q., Guo, F., Wang, J.C., et al.: Experimental study of creep properties of quartz sandstone after freezing-thawing cycles. Rock Soil Mech. 38(S1), 203–210 (2017).  https://doi.org/10.16285/j.rsm.2017.S1.024 CrossRefGoogle Scholar
  4. Du, C., Yang, C.H., Ma, H.L., et al.: Study of creep characteristics of deep rock salt. Rock Soil Mech. 33(8), 2451–2456 (2012).  https://doi.org/10.16285/j.rsm.2012.08.018 CrossRefGoogle Scholar
  5. Fan, Q.Y., Yang, K.Q., Wang, W.M.: Study of creep mechanism of argillaceous soft rocks. Chin. J. Rock Mech. Eng. 29(8), 1555–1561 (2010) Google Scholar
  6. Heap, M.J., Baud, P., Meredith, P.G., et al.: Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Planet. Sci. Lett. 307(1–2), 71–82 (2011).  https://doi.org/10.1016/j.epsl.2011.04.035 CrossRefGoogle Scholar
  7. Holyoke, C.W., Kronenberg, A.K., Newman, J.: Dislocation creep of polycrystalline dolomite. Tectonophysics 590(1), 72–82 (2013).  https://doi.org/10.1016/j.tecto.2013.01.011 CrossRefGoogle Scholar
  8. Kumar, R., Sharma, K.G., Varadarajan, A.: Post-peak response of some metamorphic rocks of India under high confining pressures. Int. J. Rock Mech. Min. Sci. 47(29), 1357–1362 (2010).  https://doi.org/10.1016/j.ijrmms.2010.08.016 CrossRefGoogle Scholar
  9. Li, X.Z., Shao, Z.S.: Micro-macro modeling of brittle creep and progressive failure subjected to compressive loading in rock. Environ. Earth Sci. 75(3), 583–593 (2016).  https://doi.org/10.1007/s12665-016-5365-3 CrossRefGoogle Scholar
  10. Liu, L., Wang, G.M., Chen, J.H., et al.: Creep experiment and rheological model of deep saturated rock. Trans. Nonferr. Met. Soc. China 23(2), 478–483 (2013).  https://doi.org/10.1016/S1003-6326(13)62488-7 CrossRefGoogle Scholar
  11. Liu, H.Z., Xie, H.Q., He, J.D., et al.: Nonlinear creep damage constitutive model for soft rocks. Mech. Time-Depend. Mater. 21(8), 73–96 (2017).  https://doi.org/10.1007/s11043-016-9319-7 CrossRefGoogle Scholar
  12. Mishra, B., Verma, P.: Uniaxial and triaxial single and multistage creep tests on coal-measure shale rocks. Int. J. Coal Geol. 137(1), 55–65 (2015).  https://doi.org/10.1016/j.coal.2014.11.005 CrossRefGoogle Scholar
  13. Nakada, M., Miyano, Y., Cai, H.N., et al.: Prediction of long-term viscoelastic behavior of amorphous resin based on the time-temperature superposition principle. Mech. Time-Depend. Mater. 15(2), 309–316 (2011).  https://doi.org/10.1007/s11043-011-9139-8 CrossRefGoogle Scholar
  14. Noel, C., Christophe, L., Charles, C.: Stability analysis of quasi-brittle materials – creep under multiaxial loading. Mech. Time-Depend. Mater. 10(3), 35–50 (2006).  https://doi.org/10.1007/s11043-006-9010-5 CrossRefGoogle Scholar
  15. Özşen, H., Özkan, İ., Şensöğüt, C.: Measurement and mathematical modelling of the creep behaviour of Tuzköy rock salt. Int. J. Rock Mech. Min. Sci. 66(2), 128–135 (2014).  https://doi.org/10.1016/j.ijrmms.2014.01.005 CrossRefGoogle Scholar
  16. Wang, D.K., Wei, J.P., Yin, G.Z., et al.: Triaxial creep behavior of coal containing gas in laboratory. Proc. Eng. 26(4), 1001–1010 (2011).  https://doi.org/10.1016/j.proeng.2011.11.2267 CrossRefGoogle Scholar
  17. Yang, X.D., Chen, L.Q.: Stability in parametric resonance of axially accelerating beams constituted by Boltzmann’s superposition principle. J. Sound Vib. 289(7), 54–65 (2006).  https://doi.org/10.1016/j.jsv.2005.01.035 CrossRefGoogle Scholar
  18. Zhang, H.B., Wang, Z.Y., Zheng, Y.L., et al.: Study on tri-axial creep experiment and constitutive relation of different rock salt. Saf. Sci. 50(4), 801–805 (2012).  https://doi.org/10.1016/j.ssci.2011.08.030 CrossRefGoogle Scholar
  19. Zhang, Y., Xu, W.Y., Shao, J.F., et al.: Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Sci. Eng. 8(1), 55–62 (2015).  https://doi.org/10.1016/j.wse.2015.01.005 CrossRefGoogle Scholar
  20. Zhao, Y.R., Yang, H.Q., Chen, Z.K., et al.: Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine. Rock Mech. Rock Eng. 52(11), 1303–1313 (2019).  https://doi.org/10.1007/s00603-018-1667-y CrossRefGoogle Scholar
  21. Zheng, H., Feng, X.T., Hao, X.J.: A creep model for weakly consolidated porous sandstone including volumetric creep. Int. J. Rock Mech. Min. Sci. 78(6), 99–107 (2015).  https://doi.org/10.1016/j.ijrmms.2015.04.021 CrossRefGoogle Scholar
  22. Zhou, Z.L., Zhao, Y., Jiang, Y.H., et al.: Dynamic behavior of rock during its post failure stage in SHPB tests. Trans. Nonferr. Met. Soc. China 27(11), 184–196 (2017).  https://doi.org/10.1016/S1003-6326(17)60021-9 CrossRefGoogle Scholar
  23. Zvonko, T.: Rheological model of soft rock creep based on the tests on marl. Mech. Time-Depend. Mater. 10(2), 135–154 (2006).  https://doi.org/10.1007/s11043-006-9005-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shuang-jian Niu
    • 1
    • 3
  • Wen-lin Feng
    • 2
  • Jin Yu
    • 1
    Email author
  • Chun-sheng Qiao
    • 2
  • Sheng-xiang Liu
    • 3
  • Yong-biao Sun
    • 3
  1. 1.Fujian Research Center for Tunnelling and Urban Underground Space EngineeringHuaqiao UniversityXiamenChina
  2. 2.School of Civil EngineeringBeijing Jiaotong UniversityBeijingChina
  3. 3.Shenzhen Road and Bridge Construction Group Co., Ltd.ShenzhenChina

Personalised recommendations