Advertisement

Rotational and axial flow of pseudoplastic fluids

  • Mehdi Yektapour
  • Nariman AshrafiEmail author
Article
  • 5 Downloads

Abstract

Effects of a controllable axial flow on the stability of rotational flow of pseudoplastic fluids in the gap between concentric cylinders are studied. It is assumed that the outer cylinder is fixed while the inner one has simultaneous and independent rotational and translational motions. The fluid follows the Carreau model and mixed boundary conditions are imposed. The four-dimensional low-order dynamical system resulting from Galerkin projection of the conservation of mass and momentum equations includes highly non-linear terms in the velocity components originating from the shear-dependent viscosity. In the absence of the axial flow as the pseudoplasticity effect increases, the critical Taylor number at which the rotational flow loses its stability to the vortex structure decreases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a Newtonian fluid in rotation. The existence of an axial flow, induced by the translational motion of the inner cylinder, appears to further advance the emergence of the vortex flow. Complete flow analysis together with viscosity maps are given for the entire flow field.

Keywords

Shearthinning non-Newtonian Stability 

Notes

References

  1. Andereck, C.D., Liu, S.S., Swinney, H.L.: Flow regimes in the circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155–183 (1986) CrossRefGoogle Scholar
  2. Ashrafi, N.: Stability analysis of shear-thinning flow between rotating cylinders. Appl. Math. Model. 35, 4407–4423 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  3. Ashrafi, N., Hazbavi, A.: Stability of non-Newtonian Taylor–Couette with axial flow. In: Proceedings of the ASME International Mechanical Engineering Congress & Exposition, November (2011) Google Scholar
  4. Ashrafi, N., Hazbavi, A.: Flow pattern and stability of pseudo plastic axial Taylor–Couette flow. Int. J. Non-Linear Mech. 47, 905–917 (2012) CrossRefGoogle Scholar
  5. Ashrafi, N., Hazbavi, A.: Heat transfer in flow of nonlinear fluids with viscous dissipation. Arch. Appl. Mech. 83, 1739–1754 (2013).  https://doi.org/10.1007/s00419-013-0774-1 CrossRefzbMATHGoogle Scholar
  6. Ashrafi, N., Khayat, R.: Shear-thinning-induced chaos in Taylor–Couette flow. Phys. Rev. E 61(2), 1455–1467 (2000) CrossRefGoogle Scholar
  7. Ashrafi, N., Binding, D.M., Walters, K.: Cavitation effects in eccentric-cylinder flows of Newtonian and non-Newtonian fluids. Chem. Eng. Sci. 56, 5565–5574 (2001) CrossRefGoogle Scholar
  8. Baumert, B.M., Muller, S.J.: Flow visualization of the elastic Taylor–Couette flow in Boger fluids. Rheol. Acta 34, 147 (1995) CrossRefGoogle Scholar
  9. Berger, H.R.: Mode analysis of Taylor–Couette flow in finite gaps. Z. Angew. Math. Mech. 79(2), 91–96 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1, 2nd edn. Wiley, New York (1987) Google Scholar
  11. Chandrasekhar, S.: The hydrodynamic stability of viscous flow between coaxial cylinders. Proc. Natl. Acad. Sci. USA 46, 141–143 (1960) CrossRefzbMATHGoogle Scholar
  12. Cornish, J.A.: Flow of water through fine clearances with relative motion of the boundaries. Proc. R. Soc. Lond. A 140, 227–240 (1933) CrossRefGoogle Scholar
  13. Coronado-Matutti, O., Souza Mendes, P.R., Carvalho, M.S.: Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. J. Fluids Eng. 126, 385–390 (2004) CrossRefGoogle Scholar
  14. Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003) CrossRefzbMATHGoogle Scholar
  15. Crumeyrolle, O., Mutabazi, I.: Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions. Phys. Fluids 14(5), 1681–1688 (2002) CrossRefzbMATHGoogle Scholar
  16. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981) zbMATHGoogle Scholar
  17. Dusting, J., Balbani, S.: Mixing in a Taylor–Couette reactor in the non-wavy regime. Chem. Eng. Sci. 64, 3103–3111 (2009) CrossRefGoogle Scholar
  18. Escudier, M.P., Gouldson, I.W., Jonset, D.M.: Taylor vortices in Newtonian and shear-thinning liquids. Proc. R. Soc. Lond. A 449, 155–176 (1995) CrossRefzbMATHGoogle Scholar
  19. Hoffmann, C., Altmeyer, S., Pinter, A., Lucke, M.: Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals. New J. Phys. 11, 1 (2009) Google Scholar
  20. Hwang, J., Yang, K.: Numerical study of Taylor–Couette flow with an axial flow. Comput. Fluids 33, 97–118 (2004) CrossRefzbMATHGoogle Scholar
  21. Kassab, S.Z., Ismail, A.S., Elessawi, M.M.: Drilling fluid rheology and hydraulics for oil fields. Eur. J. Sci. Res. 57(1), 68–86 (2011). ISSN 1450-216X Google Scholar
  22. Khayat, R., Ashrafi, N.: A low-dimensional approach to nonlinear plane-Poiseuille flow of viscoelastic fluids. Phys. Fluids 14(5), 1757–1767 (2002) CrossRefzbMATHGoogle Scholar
  23. Khellaf, K., Lauriat, G.: Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders. J. Non-Newton. Fluid Mech. 89, 45–61 (2000) CrossRefzbMATHGoogle Scholar
  24. Kuhlmann, H.: Model for Taylor Couette flow. Phys. Rev. A 32(3), 1703–1707 (1985) CrossRefGoogle Scholar
  25. Kuhlmann, H., Roth, D., Lucke, M.: Taylor flow and harmonic modulation of the driving force. Phys. Rev. A, At. Mol. Opt. Phys. 39, 745 (1988) CrossRefGoogle Scholar
  26. Larson, R.G.: Instabilities in viscoelastic flows. Rheol. Acta 31, 213 (1992) CrossRefGoogle Scholar
  27. Larson, R.G., Shaqfeh, E.S.G., Muller, S.J.: A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  28. Li, Z., Khayat, R.: A non-linear dynamical system approach to finite amplitude Taylor-Vortex flow of shear-thinning fluids. Int. J. Numer. Methods Fluids 45, 321–340 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  29. Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130 (1963) CrossRefzbMATHGoogle Scholar
  30. Nemri, M., Charton, S., Climent, E.: Mixing and axial dispersion in Taylor–Couette flows: the effect of the flow regime. Chem. Eng. Sci. 139, 109–124 (2016) CrossRefGoogle Scholar
  31. Pascal, J.P., Rasmussen, H.: Stability of power law fluid flow between rotating cylinders. Dyn. Syst. 10, 65–93 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  32. Pinter, A., Lucke, M., Hoffmann, Ch.: Spiral and Taylor vortex fronts and pulses in axial through flow. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67, 026318 (2003) MathSciNetCrossRefGoogle Scholar
  33. Pirro, D., Quadrio, M.: Direct numerical simulation of turbulent Taylor–Couette flow. Eur. J. Mech. B, Fluids 27, 552–566 (2008) CrossRefzbMATHGoogle Scholar
  34. Recktenwald, A., Lucke, M., Muller, H.W.: Taylor vortex formation in axial through-flow: linear and weakly nonlinear analysis. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 48, 4444 (1993) CrossRefGoogle Scholar
  35. Sinevic, V., Kuboi, R., Nienow, A.W.: Power numbers, Taylor numbers and Taylor vortices in viscous Newtonian and non-Newtonian fluids. Chem. Eng. Sci. 41(11), 2915–2923 (1986) CrossRefGoogle Scholar
  36. Sparrow, C.: The Lorenz Equations. Springer, New York (1983) Google Scholar
  37. Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. Lond. A 223, 289–343 (1923) CrossRefzbMATHGoogle Scholar
  38. Thomas, R.H., Walters, K.: The stability of elastico-viscous flow between rotating cylinders. Part 1. J. Fluid Mech. 18, 33 (1964) MathSciNetCrossRefzbMATHGoogle Scholar
  39. Veronis, G.: Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545–554 (1966) MathSciNetCrossRefGoogle Scholar
  40. Wu, Y.-H., Liu, K.-F.: Start-up flow of a Bingham fluid between two coaxial cylinders under a constant wall shear stress. J. Non-Newton. Fluid Mech. 223, 116–121 (2015) MathSciNetCrossRefGoogle Scholar
  41. Yahata, H.: Temporal development of the Taylor vortices in a rotating field. Prog. Theor. Phys. 59, 1755 (1978) CrossRefGoogle Scholar
  42. Yorke, J.A., Yorke, E.D.: In: Swinney, H.L., Gollub, J.P. (eds.) Hydrodynamic Instabilities and the Transition to Turbulence. Springer, Berlin (1981) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Mechanical EngineeringPayame Noor UniversityTehranIran

Personalised recommendations