Rheological constitutive equations for glassy polymers, based on trap phenomenology

  • G. Spathis
  • E. Kontou


The present work comprises an upgraded version of a previous research of ours, referring to the evaluation of viscoelastic functions in a broad frequency and time scale. Our analysis is based on the assumption that the polymeric structure consists of an ensemble of meso-regions, with their own energy barrier, which follows a distribution. Through a cooperative process, the meso-regions are linked to each other, and perform rearrangements by changing their positions. The time-dependent behavior is controlled by the distribution energy barriers. In the present analysis, the distribution function will be evaluated by the experimental data of loss modulus. Hereafter, the viscoelastic functions can be evaluated, with further parameters. In addition, the temperature dependence of storage and loss modulus at a constant frequency can be described within the context of the proposed model.


Viscoelastic functions Modeling Distribution function 


  1. Adams, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43(1), 139–146 (1965) CrossRefGoogle Scholar
  2. Alves, N.M., Gomez Ribelles, J.L., Gomez Tejedor, J.A., Mano, J.F.: Viscoelastic behavior of poly(methyl methacrylate) networks with different cross-linking degrees. Macromolecules 37, 3735–3744 (2004) CrossRefGoogle Scholar
  3. Bouchaud, J.P., Cugliandolo, L.F., Kurchan, J., Mezard, M.: Spin Glasses and Random Fields. World Scientific, Singapore (1998) Google Scholar
  4. Buchenau, U.: Mechanical relaxation in glasses and at the glass transition. Phys. Rev. B 63, 104203 (2001) CrossRefGoogle Scholar
  5. Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79 (1980) MathSciNetCrossRefGoogle Scholar
  6. Drozdov, A.D.: Mechanics of Viscoelastic Solids. Wiley, New York (1998) zbMATHGoogle Scholar
  7. Drozdov, A.D., Christiansen, J.deC.: Cyclic viscoplasticity of thermoplastic elastomers. Acta Mech. 194, 47–65 (2007) CrossRefzbMATHGoogle Scholar
  8. Drozdov, A.D., Al-Mulla, A., Gupta, R.K.: Thermo-viscoelastic response of polycarbonate reinforced with short glass fibers. Macromol. Theory Simul. 12, 354–366 (2003) CrossRefGoogle Scholar
  9. Drozdov, A.D., Hog Lejre, A.-L., Christiansen, J.deC.: Viscoelasticity, viscoplasticity and creep failure of polypropylene/clay nanocomposites. Compos. Sci. Technol. 69, 2596–2603 (2009) CrossRefGoogle Scholar
  10. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980) Google Scholar
  11. Fulcher, G.A.: J. Am. Chem. Soc. 8, 339 (1925) Google Scholar
  12. Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946) CrossRefGoogle Scholar
  13. Katicha, S.W., Flintsch, G.W.: Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation. Rheol. Acta 51, 675–689 (2012). CrossRefGoogle Scholar
  14. Katsourinis, S., Kontou, E.: Comparing interconversion methods between linear viscoelastic material functions. Mech. Time-Depend. Mater. 22(3), 401–419 (2018). CrossRefGoogle Scholar
  15. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43(2), 219–256 (1948) CrossRefGoogle Scholar
  16. Kontou, E., Katsourinis, S.: Application of a fractional model for simulation of the viscoelastic functions of polymers. J. Appl. Polym. Sci. (2016). Google Scholar
  17. Ktitorov, S.A.: Determination of the relaxation time distribution from the dielectric losses. Tech. Phys. Lett. 29(11), 956–958 (2003) CrossRefGoogle Scholar
  18. Matsuoka, S.: Relaxation Phenomena in Polymers. Hanser Publishers, New York (1992) Google Scholar
  19. Monthus, C., Boucheaud, J.P.: Models of traps and glass phenomenology. J. Phys. A, Math. Gen. 29, 3847–3869 (1996) CrossRefzbMATHGoogle Scholar
  20. Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I. A numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999) CrossRefzbMATHGoogle Scholar
  21. Plazek, D.J., Ragupathi, N., Orborn, S.J.: Determination of dynamic storage and loss compliance from creep data. J. Rheol. 23, 477–488 (1979) CrossRefGoogle Scholar
  22. Schapery, S.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997) CrossRefGoogle Scholar
  23. Sollich, P.: Rheological constitutive equations for model of soft glassy materials. Phys. Rev. E 58, 738 (1998) CrossRefGoogle Scholar
  24. Spathis, G., Kontou, E.: A viscoelastic model for predicting viscoelastic functions of polymers and polymer nanocomposites. Int. J. Solids Struct. 141–142, 102–109 (2018). CrossRefGoogle Scholar
  25. Spathis, G., Katsourinis, S., Kontou, E.: Evaluation of fundamental viscoelastic functions by a non-linear viscoelastic model. Polym. Eng. Sci. 57, 1389–1395 (2017). CrossRefGoogle Scholar
  26. Tanaka, F., Edwards, S.F.: Viscoelastic properties of physically cross-linked networks, transient network theory. Macromolecules 25, 1516–1523 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematical and Physical Sciences, Section of MechanicsNational Technical University of AthensAthensGreece

Personalised recommendations