Advertisement

Mechanics of Time-Dependent Materials

, Volume 22, Issue 1, pp 51–66 | Cite as

A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo–chemo-mechanical aging of rubbers

  • S. Lejeunes
  • D. Eyheramendy
  • A. Boukamel
  • A. Delattre
  • S. Méo
  • K. D. Ahose
Article

Abstract

In this paper we investigate the modeling of chemo-physical evolution due to thermo-mechanical loadings at finite strain in soft materials. In particular we discuss the question of a proper and consistent thermodynamical formulation in the case of nearly incompressible materials. The objective of this phenomenological modeling is to represent the thermo–chemo-mechanical aging that occurs in filled rubbers during high-cycle fatigue for some specific loading conditions.

Keywords

Chemo-physical aging Filled rubber Self-heating 

References

  1. André, M., Wriggers, P.: Thermo-mechanical behaviour of rubber materials during vulcanization. Int. J. Solids Struct. 42(16–17), 4758–4778 (2005). doi: 10.1016/j.ijsolstr.2005.01.015. http://www.sciencedirect.com/science/article/pii/S0020768305000363 CrossRefzbMATHGoogle Scholar
  2. Budrugeac, P.: Accelerated thermal ageing of nitrile–butadiene rubber under air pressure. Polym. Degrad. Stab. 47(1), 129–132 (1995). doi: 10.1016/0141-3910(94)00101-D. http://www.sciencedirect.com/science/article/pii/014139109400101D CrossRefGoogle Scholar
  3. Ciutacu, S., Budrugeac, P., Mareş, G., Boconcios, I.: Accelerated thermal ageing of ethylene–propylene rubber in pressurized oxygen. Polym. Degrad. Stab. 29(3), 321–329 (1990). doi: 10.1016/0141-3910(90)90043-7. http://www.sciencedirect.com/science/article/pii/0141391090900437 CrossRefGoogle Scholar
  4. Delattre, A., Lejeunes, S., Lacroix, F., Méo, S.: On the dynamical behavior of filled rubbers at different temperatures: experimental characterization and constitutive modeling. Int. J. Solids Struct. 90, 178–193 (2016). doi: 10.1016/j.ijsolstr.2016.03.010. http://www.sciencedirect.com/science/article/pii/S0020768316001293 CrossRefGoogle Scholar
  5. Garnier, P., Cam, J.B.L., Grédiac, M.: The influence of cyclic loading conditions on the viscoelastic properties of filled rubber. Mech. Mater. 56, 84–94 (2013).  10.1016/j.mechmat.2012.10.001. http://www.sciencedirect.com/science/article/pii/S0167663612001688 CrossRefGoogle Scholar
  6. Germain, P., Nguyen, Q., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983). doi: 10.1115/1.3167184 CrossRefzbMATHGoogle Scholar
  7. Gigliotti, M., Grandidier, J.C.: Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments. C. R., Méc. 338(3), 164–175 (2010). doi: 10.1016/j.crme.2010.02.008. http://www.sciencedirect.com/science/article/pii/S1631072110000240 CrossRefzbMATHGoogle Scholar
  8. Gigliotti, M., Grandidier, J.C., Lafarie-Frenot, M.C.: Assessment of chemo-mechanical couplings in polymer matrix materials exposed to thermo-oxidative environments at high temperatures and under tensile loadings. Mech. Mater. 43(8), 431–443 (2011). doi: 10.1016/j.mechmat.2011.04.007 http://www.sciencedirect.com/science/article/pii/S016766361100069X CrossRefGoogle Scholar
  9. Grandcoin, J., Boukamel, A., Lejeunes, S.: A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers. Int. J. Solids Struct. 51(6), 1274–1286 (2014). doi: 10.1016/j.ijsolstr.2013.12.018. http://www.sciencedirect.com/science/article/pii/S0020768313004915 CrossRefGoogle Scholar
  10. Johlitz, M., Lion, A.: Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics. Contin. Mech. Thermodyn. 25(5), 605–624 (2013). doi: 10.1007/s00161-012-0255-8 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Kannan, K., Rajagopal, K.: A thermodynamical framework for chemically reacting systems. Z. Angew. Math. Phys. 62, 331–363 (2011). doi: 10.1007/s00033-010-0104-1 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Lion, A., Höfer, P.: On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59(1), 59–89 (2007) zbMATHGoogle Scholar
  13. Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51(3–4), 729–739 (2014). doi: 10.1016/j.ijsolstr.2013.10.036. http://www.sciencedirect.com/science/article/pii/S0020768313004319 CrossRefGoogle Scholar
  14. Loeffel, K., Anand, L.: A chemo–thermo-mechanically coupled theory for elastic–viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int. J. Plast. 27(9), 1409–1431 (2011). doi: 10.1016/j.ijplas.2011.04.001 http://www.sciencedirect.com/science/article/pii/S0749641911000507 CrossRefzbMATHGoogle Scholar
  15. Mahnken, R.: Thermodynamic consistent modeling of polymer curing coupled to visco-elasticity at large strains. Int. J. Solids Struct. 50(13), 2003–2021 (2013). doi: 10.1016/j.ijsolstr.2013.01.033 http://www.sciencedirect.com/science/article/pii/S0020768313000486 CrossRefGoogle Scholar
  16. N’Guyen, T., Lejeunes, S., Eyheramendy, D., Boukamel, A.: A thermodynamical framework for the thermo–chemo-mechanical couplings in soft materials at finite strain. Mech. Mater. 95, 158–171 (2016). doi: 10.1016/j.mechmat.2016.01.008. http://www.sciencedirect.com/science/article/pii/S016766361600017X CrossRefGoogle Scholar
  17. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, 3rd edn. (1968). Interscience Publishers zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.LMA, CNRS, UPR 7051, Centrale MarseilleAix-Marseille Univ.Marseille Cedex 20France
  2. 2.IRT Raylenium, LAMIHUniv. ValenciennesFamarsFrance
  3. 3.Airbus HelicoptersMarignaneFrance
  4. 4.LMR, EA 2640Université F. Rabelais de ToursToursFrance

Personalised recommendations