Skip to main content
Log in

Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The shape-memory response (SMR) of “click” thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures (\(T_{\mathrm{prog}}\)) and isothermal-recovery temperatures (\(T_{\mathrm{iso}}\)) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of \(T_{\mathrm{iso}}\): a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to \(T_{\mathrm{g}}\). The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time (\(t_{\mathrm{sr}}\)) is significantly reduced when the isothermal-recovery temperature \(T_{\mathrm{iso}}\) increases from below to above \(T_{\mathrm{g}}\) because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by \(T_{\mathrm{iso}}\); at higher \(T_{\mathrm{iso}}\) it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at \(T_{\mathrm{iso}} < T_{\mathrm{g}}\) to maximize the effect of the structure and/or by increasing \(T_{\mathrm{iso}}\) to minimize the effect but increasing the shape-recovery rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrieta, J.S., Diani, J., Gilormini, P.: Cyclic and monotonic testing of free and constrained recovery properties of a chemically crosslinked acrylate. J. Appl. Polym. Sci. 131, 39813–39820 (2014a)

    Article  Google Scholar 

  • Arrieta, S., Diani, J., Gilormini, P.: Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mech. Mater. 68, 95–103 (2014b)

    Article  Google Scholar 

  • Belmonte, A., Guzmán, D., Fernández-Francos, X., De la Flor, S.: Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy “click” systems. Polymers 7, 2146–2164 (2015)

    Article  Google Scholar 

  • Berg, G.J., McBride, M.K., Wang, C., Bowman, C.N.: New directions in the chemistry of shape memory polymers. Polymer 55, 1–24 (2014)

    Article  Google Scholar 

  • Binder, W.H., Sachsenhofer, R.: “Click” chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007)

    Article  Google Scholar 

  • Brändle, A., Khan, A.: Thiol–epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym. Chem. 3, 3224 (2012)

    Article  Google Scholar 

  • Carlborg, C.F., Vastesson, A., Liu, Y., Van Der Wijngaart, W., Johansson, M., Haraldsson, T.: Functional off-stoichiometry thiol-ene-epoxy thermosets featuring temporally controlled curing stages via an UV/UV dual cure process. J. Polym. Sci., Part A, Polym. Chem. 52, 2604–2615 (2014)

    Article  Google Scholar 

  • Chen, X., Nguyen, T.D.: Influence of thermoviscoelastic properties and loading conditions on the recovery performance of shape memory polymers. Mech. Mater. 43, 127–138 (2011)

    Article  Google Scholar 

  • Diani, J., Gilormini, P., Frédy, C., Rousseau, I.: Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49, 793–799 (2012)

    Article  Google Scholar 

  • Fan, M., Yu, H., Li, X., Cheng, J., Zhang, J.: Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A. Smart Mater. Struct. 22, 055034 (2013)

    Article  Google Scholar 

  • Feldkamp, D.M., Rousseau, I.A.: Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol. Mater. Eng. 295, 726–734 (2010)

    Article  Google Scholar 

  • Feldkamp, D.M., Rousseau, I.A.: Effect of chemical composition on the deformability of shape-memory epoxies. Macromol. Mater. Eng. 296, 1128–1141 (2011)

    Article  Google Scholar 

  • Flores, M., Tomuta, A.M., Fernández-Francos, X., Ramis, X., Sangermano, M., Serra, A.: A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer 54, 5473–5481 (2013)

    Article  Google Scholar 

  • Ge, Q., Yu, K., Ding, Y., Jerry Qi, H.: Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers. Soft Matter 8, 11098 (2012)

    Article  Google Scholar 

  • Guzmán, D., Ramis, X., Fernández-Francos, X., Serra, A.: New catalysts for diglycidyl ether of bisphenol a curing based on thiol-epoxy click reaction. Eur. Polym. J. 59, 377–386 (2014)

    Article  Google Scholar 

  • Hager, M.D., Bode, S., Weber, C., Schubert, U.S.: Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015)

    Article  Google Scholar 

  • Jin, K., Heath, W.H., Torkelson, J.M.: Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: effects of catalysis and functionality. Polymer 81, 70–78 (2015)

    Article  Google Scholar 

  • Lakhera, N., Yakacki, C.M., Nguyen, T.D., Frick, C.P.: Partially constrained recovery of (meth)acrylate shape-memory polymer networks. J. Appl. Polym. Sci. 126, 72–82 (2012)

    Article  Google Scholar 

  • Lendlein, A., Sauter, T.: Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)

    Article  Google Scholar 

  • Leng, J., Yu, K., Sun, J., Liu, Y.: Deployable morphing structure based on shape memory polymer. Aircr. Eng. Aerosp. Technol. 87, 218–223 (2015)

    Article  Google Scholar 

  • Leonardi, A.B., Fasce, L.A., Zucchi, I.A., Hoppe, C.E., Soulé, E.R., Pérez, C.J., Williams, R.J.J.: Shape memory epoxies based on networks with chemical and physical crosslinks. Eur. Polym. J. 47, 362–369 (2011)

    Article  Google Scholar 

  • Liu, Y., Han, C., Tan, H., Du, X.: Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A. 527, 2510–2514 (2010)

    Article  Google Scholar 

  • Loureiro, R.M., Amarelo, T.C., Abuin, S.P., Soulé, E.R., Williams, R.J.J.: Kinetics of the epoxy–thiol click reaction initiated by a tertiary amine: calorimetric study using monofunctional components. Thermochim. Acta 616, 79–86 (2015)

    Article  Google Scholar 

  • Pandini, S., Bignotti, F., Baldi, F., Passera, S.: Network architecture and shape memory behavior of cold-worked epoxies. J. Intell. Mater. Syst. Struct. 24, 1583–1597 (2013)

    Article  Google Scholar 

  • Pascault, J.-P., Sautereau, H., J, V., R, W.J.J.: Thermosetting Polymers. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  • Rousseau, I.A., Xie, T.: Relationship between materials properties and shape memory behavior in epoxy-amine polymers. In: Materials Research Society Symposium Proceedings, pp. 31–36 (2009)

    Google Scholar 

  • Rousseau, I.A.: Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48, 2075–2089 (2008)

    Article  Google Scholar 

  • Santhosh Kumar, K.S., Biju, R., Reghunadhan Nair, C.P.: Progress in shape memory epoxy resins. React. Funct. Polym. 73, 421–430 (2013)

    Article  Google Scholar 

  • Santiago, D., Fabregat-Sanjuan, A., Ferrando, F., De la Flor, S.: Recovery stress and work output in hyperbranched poly(ethyleneimine)-modified shape-memory epoxy polymers. J. Polym. Sci., Part B, Polym. Phys. 54(10), 1002–1013 (2016)

    Article  Google Scholar 

  • Santiago, D., Fernández-Francos, X., Ferrando, F., De la Flor, S.: Shape-memory effect in hyperbranched poly(ethyleneimine)-modified epoxy thermosets. J. Polym. Sci., B, Polym. Phys. 53(13), 924–933 (2015)

    Article  Google Scholar 

  • Scalet, G., Auricchio, F., Bonetti, E., Castellani, L., Ferri, D., Pachera, M., Scavello, F.: An experimental, theoretical and numerical investigation of shape memory polymers. Int. J. Plast. 67, 127–147 (2015)

    Article  Google Scholar 

  • Song, J.J., Chang, H.H., Naguib, H.E.: Biocompatible shape memory polymer actuators with high force capabilities. Eur. Polym. J. 67, 186–198 (2015)

    Article  Google Scholar 

  • Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  • Tandon, G.P., Gibson, T., Shumaker, J., Coomer, R., Baur, J., Justice, R.S.: Processing and characterization of novel bismaleimide-based shape memory polymer composites. In: ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2012, vol. 1, pp. 19–25 (2012)

    Google Scholar 

  • Tandon, G.P., McClung, A.J., Bauer, J.W.: Shape-Memory Polymers for Aerospace Applications. DEStech Publications (2016)

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  • Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., Gall, K.: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255–2263 (2007)

    Article  Google Scholar 

  • Yakacki, C.M., Shandas, R., Safranski, D., Ortega, A.M., Sassaman, K., Gall, K.: Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008a)

    Article  Google Scholar 

  • Yakacki, C.M., Willis, S., Luders, C., Gall, K.: Deformation limits in shape-memory polymers. Adv. Eng. Mater. 10, 112–119 (2008b)

    Article  Google Scholar 

  • Zhao, Q., Qi, H.J., Xie, T.: Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 1–42 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank MICINN (MAT2014-53706-C03-01 and MAT2014-53706-C03-02) and Generalitat de Catalunya (2014-SGR-67) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia De la Flor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmonte, A., Fernández-Francos, X., De la Flor, S. et al. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems. Mech Time-Depend Mater 21, 133–149 (2017). https://doi.org/10.1007/s11043-016-9322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9322-z

Keywords

Navigation