Skip to main content
Log in

Incremental forms of Schapery’s model: convergence and inversion to simulate strain controlled ramps

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Schapery’s nonlinear viscoelastic model is written in incremental form, and three different approximations of nonlinearity functions in the time increment are systematically analysed with respect to the convergence rate. It is shown that secant slope is the best approximation of the time shift factor, leading to significantly higher convergence rate. This incremental form of the viscoelastic model, Zapas’ model for viscoplasticity, supplemented with terms accounting for damage effect is used to predict inelastic behaviour of material in stress controlled tests. Then the incremental formulation is inverted to simulate stress development in ramps where strain is the input parameter. A comparison with tests shows good ability of the model in inverted form to predict stress–strain response as long as the applied strain is increasing. However, in strain controlled ramps with unloading, the inverted model shows unrealistic hysteresis loops. This is believed to be a proof of the theoretically known incompatibility of the stress and strain controlled formulations for nonlinear materials. It also shows limitations of material models identified in stress controlled tests for use in strain controlled tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beijer, J.G.J., Spoormaker, J.L.: Solution strategies for FEM analysis with nonlinear viscoelastic polymers. Comput. Struct. (2002). doi:10.1016/S0045-7949(02)00089-5

    Google Scholar 

  • Crochon, T., Schönherr, T., Li, C., Levesque, M.: On finite-element implementation strategies of Schapery-type constitutive theories. Mech. Time-Depend. Mater. (2010). doi:10.1007/s11043-010-9115-8

    Google Scholar 

  • Giannadakis, K., Varna, J.: Analysis of nonlinear shear stress–strain response of unidirectional GF/EP composite. Composites, Part A, Appl. Sci. Manuf. (2014). doi:10.1016/j.compositesa.2014.03.009

    Google Scholar 

  • Giannadakis, K., Mannberg, P., Joffe, R., Varna, J.: The sources of inelastic behavior of glass fibre/vinylester non-crimp fabric [45/−45]s laminates. J. Reinf. Plast. Compos. (2011). doi:10.1177/0731684411412644

    Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. (2004). doi:10.1002/nme.861

    MATH  Google Scholar 

  • Henriksen, M.: Nonlinear visco-elastic stress analysis—a finite element approach. Comput. Struct. 18, 133–139 (1984)

    Article  MATH  Google Scholar 

  • Kumar, R.S., Talreja, R.: A continuum damage model for linear viscoelastic composite materials. Mech. Mater. 35, 463–480 (2003)

    Article  Google Scholar 

  • Lai, J., Bakker, A.: 3-D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996)

    Article  MATH  Google Scholar 

  • Lou, Y.C., Schapery, R.A.: Viscoelastic characterization of a nonlinear fiber-reinforced plastic. J. Compos. Mater. 5, 208–234 (1971)

    Article  Google Scholar 

  • Luk-Cyr, J., Crochon, T., Li, C., Levesque, M.: Interconversion of linearly viscoelastic material functions expressed as Prony series: a closure. Mech. Time-Depend. Mater. (2013). doi:10.1007/s11043-012-9176-y

    Google Scholar 

  • Marklund, E., Eitzenberger, J., Varna, J.: Nonlinear viscoelastic viscoplastic material model including stiffness degradation for hemp/lignin composites. Compos. Sci. Technol. (2008). doi:10.1016/j.compscitech.2008.03.011

    Google Scholar 

  • Nordin, L.-O., Varna, J.: Nonlinear viscoplastic and nonlinear viscoelastic material model for paper fiber composites in compression. Composites, Part A, Appl. Sci. Manuf. (2006). doi:10.1016/j.compositesa.2005.02.015

    Google Scholar 

  • Papanicolaou, G.C., Zaoutsos, S.P., Kontou, E.A.: Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behaviour. Compos. Sci. Technol. (2004). doi:10.1016/j.compscitech.2004.05.005

    Google Scholar 

  • Poon, H., Ahmad, M.F.: A material point time integration procedure for anisotropic, thermo rheologically simple, viscoelastic solids. Comput. Mech. 21, 236–252 (1998)

    Article  MATH  Google Scholar 

  • Pupure, L., Varna, J., Joffe, R., Pupurs, A.: An analysis of the nonlinear behavior of lignin-based flax composites. Mech. Compos. Mater. (2013). doi:10.1007/s11029-013-9330-x

    Google Scholar 

  • Rozite, L., Varna, J., Joffe, R., Pupurs, A.: Nonlinear behavior of PLA and lignin-based flax composites subjected to tensile loading. J. Thermoplast. Compos. Mater. (2013). doi:10.1177/0892705711425846

    Google Scholar 

  • Schapery, R.A.: On characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969a)

    Article  Google Scholar 

  • Schapery, R.A.: Further development of a thermodynamic constitutive theory: stress formulation. Purdue University report No. 69-2 (1969b)

  • Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  • Varna, J.: Characterization of viscoelasticity, viscoplasticity and damage in composites. In: Guedes, R.M. (ed.) Creep and Fatigue in Polymer Matrix Composites, pp. 514–542. Woodhead Publishing Materials, London (2011)

    Chapter  Google Scholar 

  • Varna, J., Oldenbo, M.: An incremental 2D constitutive model accounting for linear viscoelasticity and damage development in short fiber composites. Int. J. Numer. Methods Eng. (2005). doi:10.1002/nme.1411

    MATH  Google Scholar 

  • Varna, J., Rozite, L., Joffe, R., Pupurs, A.: Nonlinear behavior of PLA based flax composites. Plast. Rubber Compos. Process. Appl. (2012). doi:10.1179/1743289811Y.0000000007

    Google Scholar 

  • Zapas, L.J., Crissman, J.M.: Creep and recovery behavior of ultra-high molecular weight polyethylene in the region of small uniaxial deformations. Polymer 25, 57–62 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liva Pupure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varna, J., Pupure, L. & Joffe, R. Incremental forms of Schapery’s model: convergence and inversion to simulate strain controlled ramps. Mech Time-Depend Mater 20, 535–552 (2016). https://doi.org/10.1007/s11043-016-9311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9311-2

Keywords

Navigation