Mechanics of Time-Dependent Materials

, Volume 18, Issue 4, pp 721–742 | Cite as

Experimental and numerical study on the temperature-dependent behavior of a fluoro-elastomer

  • H. Laurent
  • G. Rio
  • A. Vandenbroucke
  • N. Aït Hocine
Article

Abstract

The aim of this study is to investigate the mechanical behavior of a fluoro-polymer elastomer in the −8 to 100C temperature range. Several cyclic tension and compression tests and multi-step relaxation tests were performed in order to determine the effects of the temperature on the behavior of the material. The Hyperelasto-Visco-Hysteresis (HVH) phenomenological model was used to account for the thermo-mechanical properties of this material. In this model, which was implemented in the in-house Herezh++ code, three sets of branches stand for different modes of characteristic behavior: the hyperelasticity contribution stands for the reversible elastic phase which occurs at the onset of the loading, the viscosity contribution models the strain rate dependent phase and the hysteresis contribution stands for the irreversible plastic phase. Temperature-dependent parameters were determined using a simplified method based on tension and compression tests interrupted by relaxation steps. The model was found to accurately describe the stress–strain evolution of the elastomer investigated under various mechanical loading conditions at various temperatures.

Keywords

Elastomer Hyper-Visco-Hysteresis model Experimental temperature-dependent studies Thermo-mechanical Finite Element modeling Complex loads 

Notes

Acknowledgements

The authors would like to thank the Brittany Region for providing financial support under the reference “Comportement ThermoMécanique des Elastomères-06007499-07009131-08008174”.

References

  1. Ameduri, B., Boutevin, B., Kostov, G.: Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 26, 105–187 (2001). doi: 10.1016/S0079-6700(00)00044-7 CrossRefGoogle Scholar
  2. Amin, A., Lion, A., Höfer, P.: Effect of temperature history on the mechanical behaviour of a filler-reinforced nr/br blend: literature review and critical experiments. Z. Angew. Math. Mech. 90(5), 347–369 (2010). doi: 10.1002/zamm.200900365 CrossRefMATHGoogle Scholar
  3. Blès, G.: Bases thermomécaniques de la modélisation du comportement des matériaux tissés et des polymères solides. Thèse de doctorat (2002) Google Scholar
  4. Chadwick, P.: Thermo-mechanics of rubberlike materials. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 276(1260), 371–403 (1973) CrossRefGoogle Scholar
  5. Drozdov, A.: Effect of temperature on the viscoelastic and viscoplastic behavior of polypropylene. Mech. Time-Depend. Mater. 14, 411–434 (2010). doi: 10.1007/s11043-010-9118-5 CrossRefGoogle Scholar
  6. Drozdov, A.D., Christiansen, J.: Thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. Int. J. Solids Struct. 46(11–12), 2298–2308 (2009). doi: 10.1016/j.ijsolstr.2009.01.015 CrossRefMATHGoogle Scholar
  7. Favier, D.: Contribution à l’étude théorique de l’élastohystérésis à température variable: application aux propriétés de mémoire de forme. Thèse de doctorat d’état (1988) Google Scholar
  8. Favier, D., Guélin, P.: A discrete memory constitutive scheme for mild steel type material theory and experiment. Arch. Mech. 37(3), 201–219 (1985) Google Scholar
  9. Guélin, P.: Remarques sur l’hystérésis mécanique. J. Méc. Théor. Appl. 19(2), 217–245 (1980) MATHGoogle Scholar
  10. Guitton, E., Rio, G., Laurent, H.: A new multiaxial loading test for investigating the mechanical behaviour of polymers. Polym. Test. 36, 32–43 (2014). doi: 10.1016/j.polymertesting.2014.03.011 CrossRefGoogle Scholar
  11. Herezh++ (2005). http://www-lg2m.univ-ubs.fr/rio, certification iddn-fr-010-0106078-000-r-p-2006-035-20600 edn
  12. Holzapfel, G., Simo, J.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33, 3019–3034 (1996). doi: 10.1016/0020-7683(95)00263-4 CrossRefMATHGoogle Scholar
  13. Khan, A.S., Baig, M., Hamid, S., Zhang, H.: Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR): Experimental results. Int. J. Solids Struct. 47(20), 2653–2659 (2010). doi: 10.1016/j.ijsolstr.2010.05.012 CrossRefMATHGoogle Scholar
  14. Laurent, H., Vandenbroucke, A., Rio, G., Hocine, N.A.: A simplified methodology to identify material parameters of a Hyperelasto-Visco-Hysteresis model: application to a fluoro-elastomer. Model. Simul. Mater. Sci. Eng. 085, 004 (2011). doi: 10.1088/0965-0393/19/8/085004 Google Scholar
  15. Lion, A.: A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation. Contin. Mech. Thermodyn. 8, 153–169 (1996). doi: 10.1007/BF01181853 CrossRefGoogle Scholar
  16. Lion, A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123, 1–25 (1996). doi: 10.1007/BF01178397 CrossRefGoogle Scholar
  17. Lion, A.: On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids 45(11–12), 1805–1834 (1997). doi: 10.1016/S0022-5096(97)00028-8 CrossRefGoogle Scholar
  18. Lion, A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000). doi: 10.1016/S0749-6419(99)00038-8 CrossRefMATHGoogle Scholar
  19. Mahnken, R., Shaban, A., Potente, H., Wilke, L.: Thermoviscoplastic modelling of asymmetric effects for polymers at large strains. Int. J. Solids Struct. 45(17), 4615–4628 (2008). doi: 10.1016/j.ijsolstr.2008.03.033 CrossRefMATHGoogle Scholar
  20. Manach, P.Y., Favier, D., Rio, G.: Finite element simulations of internal stresses generated during the pseudoelastic deformation of NiTi bodies. J. Phys. C 1(6), 244–253 (1996) Google Scholar
  21. Martinez, J., Boukamel, A., Méo, S., Lejeunes, S.: Statistical approach for a hyper-visco-plastic model for filled rubber: Experimental characterization and numerical modeling. Eur. J. Mech. A, Solids 30(6), 1028–1039 (2011). doi: 10.1016/j.euromechsol.2011.06.013 CrossRefMATHGoogle Scholar
  22. Mitra, S., Ghanbari-Siahkali, A., Kingshott, P., Almdal, K., Rehmeier, H., Christensen, A.: Chemical degradation of fluoroelastomer in alkaline environment. Polym. Degrad. Stab. 83, 195–206 (2004). doi: 10.1016/S0141-3910(03)00235-0 CrossRefGoogle Scholar
  23. Mullins, L.: Softening of rubber by deformations. Rubber Chem. Technol. 42, 339–362 (1969) CrossRefGoogle Scholar
  24. Pouriayevali, H., Arabnejad, S., Guo, Y., Shim, V.: A constitutive description of the rate-sensitive response of semi-crystalline polymers. Int. J. Impact Eng. 62, 35–47 (2013). doi: 10.1016/j.ijimpeng.2013.05.002 CrossRefGoogle Scholar
  25. Rey, T., Chagnon, G., Cam, J.B.L., Favier, D.: Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polym. Test. 32(3), 492–501 (2013). doi: 10.1016/j.polymertesting.2013.01.008 CrossRefGoogle Scholar
  26. Rio, G., Manach, P.Y., Favier, D.: Finite element simulation of 3D mechanical behaviour of NiTi shape memory alloys. Arch. Mech. 47(3), 537–556 (1995) Google Scholar
  27. Shaw, J.A., Jones, A.S., Wineman, A.S.: Chemorheological response of elastomers at elevated temperatures: Experiments and simulations. J. Mech. Phys. Solids 53, 2758–2793 (2005). doi: 10.1016/j.jmps.2005.07.004 CrossRefMATHGoogle Scholar
  28. SiDoLo: Simulation et Identification Automatique de Lois de Comportement (SiDoLo) (2008). P. Pilvin, User Manual: LIMATB-UBS edn Google Scholar
  29. Spetz, G.: Review of test methods for determination of low-temperature properties of elastomers. Polym. Test. 9, 27–37 (1989) CrossRefGoogle Scholar
  30. Treloar, L.: The Physics of Rubber Elasticity. Clarendon, Oxford (1975) Google Scholar
  31. Vandenbroucke, A., Laurent, H., Hocine, N.A., Rio, G.: A Hyperelasto-Visco-Hysteresis model for an elastomeric behaviour: experimental and numerical investigations. Comput. Mater. Sci. 48(3), 495–503 (2010). doi: 10.1016/j.commatsci.2010.02.012 CrossRefGoogle Scholar
  32. Wack, B., Terriez, J.M., Guelin, P.: A hereditary type, discrete memory, constitutive equation with applications to simple geometries. Acta Mech. 50(1–2), 9–37 (1983). doi: 10.1007/BF01170438 CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. Laurent
    • 1
  • G. Rio
    • 1
  • A. Vandenbroucke
    • 2
  • N. Aït Hocine
    • 3
  1. 1.EA 4250, Laboratoire d’Ingénierie des MATériaux de Bretagne (LIMATB)Univ. Bretagne-SudLorientFrance
  2. 2.Centre de Recherche du BouchetSafran HeraklesVert-le-PetitFrance
  3. 3.Laboratoire de Mécanique et Rhéologie (LMR)INSA-Centre Val de LoireBloisFrance

Personalised recommendations