Advertisement

Mechanics of Time-Dependent Materials

, Volume 16, Issue 3, pp 241–249 | Cite as

Estimating the creep behavior of polycarbonate with changes in temperature and aging time

  • Takenobu SakaiEmail author
  • Satoshi Somiya
Article

Abstract

Thermoplastic resins are typically used without any kind of physical aging treatment. For such materials, creep behavior and physical aging, which depend on time and temperature, occur simultaneously. The effects of these processes are evident after quenching and are recorded in the material as a thermal history. This history strongly influences mechanical properties and creep behavior in particular. Thus, a more thorough understanding of the physical aging process is desirable. We examined the creep deformation of polycarbonate (PC) to reveal the effects of physical aging on creep behavior. The effects were dependent on both time and temperature. The relationship between physical aging and creep behavior exemplified superposition principles with regard to time and both pre-test aging time and pre-test aging temperature. The superposition principles allowed the calculation of creep deformations at a given temperature; the calculated results were corroborated by experimental data.

Keywords

Polycarbonate Creep Physical aging Thermo-plastics Linear viscoelastic theory Thermal history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernatz, K.M., Girl, L., Simon, S.L., Plazek, D.J.: Physical aging by periodic creep and interrupted creep experiments 111(5), 2235–2241 (1999) Google Scholar
  2. Biswas, K.K., Somiya, S.: Study of the effect of aging progression on creep behavior of PPE composites. Mech. Time-Depend. Mater. 3(4), 335–350 (1999) CrossRefGoogle Scholar
  3. Biswas, K.K., Somiya, S., Endo, J.: Creep behavior of metal fiber-PPE composites and effect of test surroundings. Mech. Time-Depend. Mater. 3(1), 85–101 (1999) CrossRefGoogle Scholar
  4. Biswas, K.K., Ikueda, M., Somiya, S.: Study on creep behavior of glass fiber-reinforced polycarbonate. Adv. Compos. Mater. 10(2–3), 265–273 (2001) CrossRefGoogle Scholar
  5. Brinson, L.C., Gates, T.S.: Effect of physical aging on long-term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32(6–7), 827–846 (1995) zbMATHCrossRefGoogle Scholar
  6. Cangialosi, D., Schut, H., van Veen, A., Picken, S.J.: Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36, 142–147 (2003) CrossRefGoogle Scholar
  7. Hutchinson, J.M., Smith, S., Horne, B., Gourlay, G.M.: Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32, 5046–5061 (1999) CrossRefGoogle Scholar
  8. Igarashi, K., Somiya, S.: Effect of fiber volume fraction on creep compliance of composites of metamorphic poly-phenylene ether with stainless steel fiber. J. Jpn. Soc. Mech. Eng. 62(600), 1761–1766 (1996) CrossRefGoogle Scholar
  9. Iwamoto, N., Somiya, S.: Effect of the fiber volume fraction on creep compliance of fiber reinforced thermoplastic polyimide: #AURUM. J. Jpn. Soc. Mech. Eng. 61(589), 1951–1956 (1995) CrossRefGoogle Scholar
  10. Jong, S.R., Yu, T.L.: Physical aging of poly (ether sul-fone)-modified epoxy resin. J. Polym. Sci., Part B, Polym. Phys. 35, 69–83 (1997) CrossRefGoogle Scholar
  11. Knauss, W.G., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution polymers. Polym. Eng. Sci. 27(1), 86–100 (1987) CrossRefGoogle Scholar
  12. McKenna, G.B., Leterrierr, Y., Schultheisz, C.R.: The evaluation of material properties during physical aging. Polym. Eng. Sci. 35, 403–416 (1995) CrossRefGoogle Scholar
  13. Miyano, Y., Kasamori, M., Nakada, M., Tagawa, T.: Effect of physical aging on creep behavior of epoxy resin. J. Soc. Mater. Sci. Jpn. 42(476), 530–535 (1993) CrossRefGoogle Scholar
  14. Sakai, T., Somiya, S.: Estimating creep deformation of glass-fiber-reinforced polycarbonate. Mech. Time-Depend. Mater. 10(3), 185–199 (2006) CrossRefGoogle Scholar
  15. Sakai, T., Somiya, S.: Effect of thermal history on the creep behavior of polycarbonate. J. Solid Mech. Mater. Eng. 3(11), 1193–1201 (2009) CrossRefGoogle Scholar
  16. Soloukhin, V.A., Brokken-Zijp, J.C.M., van Asselen, O.L.J., de With, G.: Physical aging of polycarbonate: elastic modulus, hardness, creep, endo-thermic peak, molecular weight distribution, and infrared data. Macromolecules 36, 7585–7597 (2003) CrossRefGoogle Scholar
  17. Somiya, S.: Creep behavior of a carbon-fiber reinforced thermoplastic resin. J. Thermoplast. Compos. Mater. 7(2), 91–99 (1994) CrossRefGoogle Scholar
  18. Struik, L.C.E.: Physical Aging in Amorphous and Other Materials. Elsevier, New York (1978) Google Scholar

Copyright information

© Springer Science+Business Media, B. V. 2011

Authors and Affiliations

  1. 1.Faculty of EngineeringTokyo Metropolitan UniversityTokyoJapan
  2. 2.Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations