Mechanics of Time-Dependent Materials

, Volume 15, Issue 3, pp 293–308 | Cite as

Analysis of creep behavior in thermoplastics based on visco-elastic theory

  • Takenobu SakaiEmail author
  • Satoshi Somiya


Plastics and fiber-reinforced plastics (FRP) are used in the aerospace industry because of their mechanical properties. However, despite their excellent high-temperature mechanical properties, plastics and FRP eventually deform visco-elastically at high temperatures. Most of the research has focused on the creep behavior of FRPs, but few studies have investigated the linear visco-elastic behavior. Linear visco-elastic behavior and non-linear visco-elastic behavior occur with physical aging in these plastics. In this study, the non-linear visco-elastic behavior of plastics and FRP was investigated based on the bending creep deformation of polycarbonate (PC) and polyoxymethylene (POM). Moreover, the effects of the fiber volume fraction on the creep characteristics were investigated using glass fiber-reinforced polycarbonate (GFRPC). The creep deformation was calculated using the linear visco-elastic theory based on these effects, and comparison between experimental and estimated data showed that the creep analysis sufficiently predicted the creep behavior.


Creep Time Temperature Physical aging Crystallization Crystallinity Polycarbonate Polyoxymethylene Creep analysis Time–temperature superposition principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biswas, K.K., Somiya, S.: Study of the effect of aging progression on creep behavior of PPE composites. Mech. Time-Depend. Mater. 3(4), 335–350 (1999) CrossRefGoogle Scholar
  2. Biswas, K.K., Somiya, S.: Effect of isothermal physical aging on creep behavior of stainless–fiber/PPE composites. Mater. Sci. Res. Int. 7, 172–177 (2001) Google Scholar
  3. Biswas, K.K., Somiya, S., Endo, J.: Creep behavior of metal fiber-PPE composites and effect of test surroundings. Mech. Time-Depend. Mater. 3(1), 85–101 (1999) CrossRefGoogle Scholar
  4. Biswas, K.K., Ikueda, M., Somiya, S.: Study on creep behavior of glass fiber-reinforced polycarbonate. Adv. Compos. Mater. 10(2–3), 265–273 (2001) CrossRefGoogle Scholar
  5. Brinson, L.C., Gates, T.S.: Effect of physical aging on long-term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32(6–7), 827–846 (1995) zbMATHCrossRefGoogle Scholar
  6. Cangialosi, D., Schut, H., van Veen, A., Picken, S.J.: Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36, 142–147 (2003) CrossRefGoogle Scholar
  7. Chang, W.-Y., Lo, M.S.: Cooling and annealing properties of copolymer-type polyacetals and its crystallization behavior. J. Appl. Polym. Sci. 34(5), 1997–2023 (1987) CrossRefGoogle Scholar
  8. Chen, M.: Crystallinity of isothermally and nonisothermally crystallized poly(ether ether ketone) composites. Polym. Compos. 19(6), 689–697 (1998) CrossRefGoogle Scholar
  9. Hutchinson, J.M., Smith, S., Horne, B., Gourlay, G.M.: Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32, 5046–5061 (1999) CrossRefGoogle Scholar
  10. Igarashi, K., Somiya, S.: Effect of fiber volume fraction on creep compliance of composites of metamorphic poly-phenylene ether with stainless steel fiber. J. Jpn. Soc. Mech. Eng. 62(600), 1761–1766 (1996) Google Scholar
  11. Iwamoto, N., Somiya, S.: Effect of the fiber volume fraction on creep compliance of fiber reinforced thermoplastic polyimide: #AURUM. J. Jpn. Soc. Mech. Eng. 61(589), 1951–1956 (1995) Google Scholar
  12. Jong, S.R., Yu, T.L.: Physical aging of poly (ether sul-fone)-modified epoxy resin. J. Polym. Sci., Part B, Polym. Phys. 35, 69–83 (1997) CrossRefGoogle Scholar
  13. Knauss, W.G., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution polymers. Polym. Eng. Sci. 27(1), 86–100 (1987) CrossRefGoogle Scholar
  14. Lou, Y.C., Schapery, R.A.: Viscoelastic characterization of a non-linear fiber-reinforced plastic. J. Compos. Mater. 5, 208–234 (1971) CrossRefGoogle Scholar
  15. Miyano, Y., Kasamori, M., Nakada, M., Tagawa, T.: Effect of physical aging on creep behavior of epoxy resin. Jpn. Soc. Mater. Sci. 42(476), 530–535 (1993) Google Scholar
  16. Sakai, T., Somiya, S.: Estimating creep deformation of glass-fiber-reinforced polycarbonate. Mech. Time-Depend. Mater. 10(3), 185–199 (2006) CrossRefGoogle Scholar
  17. Sakai, T., Somiya, S.: Time–temperature dependence behavior of physical aging on creep behavior of PC. In: 2007 SEM Annual Conference. Paper No. 139, Springfield, IL, USA, June (2007a) Google Scholar
  18. Sakai, T., Somiiya, S.: Estimation corresponding to temperature change of creep behavior on glass fiber reinforced-polycarbonate. In: International Conference on Advanced Technology in Experimental Mechanics, Fukuoka, Japan, Sept. (2007b) Google Scholar
  19. Sakai, T., Kusumoto, K., Somiya, S.: Material design method on creep behavior of glass fiber-reinforced polycarbonate. In: 4th International Conference on Mechanics of Time-Dependent Materials, New York, NY, USA, Oct. (2003) Google Scholar
  20. Sakai, T., Kusumoto, K., Somiya, S.: Estimation method of creep deformation of glass fiber reinforced-polycarbonate. In: 5th International Conference on Mechanics of Time-Dependent Materials, Karuizawa, Japan, Oct. (2005) Google Scholar
  21. Sakai, T., Yamada, K., Somiya, S.: Effect of crystallization on creep behavior of glass fiber reinforced polyacetal. In: SEM XI International Congress. Paper No. 151, Orlando, FL, USA, June (2008) Google Scholar
  22. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969) CrossRefGoogle Scholar
  23. Schapery, R.A.: Mech., Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997) CrossRefGoogle Scholar
  24. Soloukhin, V.A., Brokken-Zijp, J.C.M., van Asselen, O.L.J., de With, G.: Physical aging of polycarbonate: elastic modulus, hardness, creep, endo-thermic peak, molecular weight distribution, and infrared data. Macromolecules 36, 7585–7597 (2003) CrossRefGoogle Scholar
  25. Somiya, S.: Creep behavior of a carbon-fiber reinforced thermoplastic resin. J. Thermoplast. Compos. Mater. 7(2), 91–99 (1994) CrossRefGoogle Scholar
  26. Struik, L.C.E.: Physical Aging in Amorphous and Other Materials. Elsevier Scientific Publishing Co., New York (1978) Google Scholar
  27. Sukhanova, T., Matveeva, G., Vylegzhanina, M.: Morphology and properties of poly(oxymethylene) engineering plastics. Macromol. Symp. 214, 135–145 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B. V. 2011

Authors and Affiliations

  1. 1.Faculty of EngineeringTokyo Metropolitan UniversityTokyoJapan
  2. 2.Faculty of Science and TechnologyKeio UniversityKouhoku-ku, YokohamaJapan

Personalised recommendations