Mechanics of Time-Dependent Materials

, Volume 14, Issue 2, pp 203–217 | Cite as

Elastic response in wood under moisture content variations: analytic development

Article

Abstract

Creep evolution of timber structures results from the interaction between mechanical stresses due to different loads and hydric stresses due to moisture content variations. This paper deals with a thermodynamic approach in order to take into account a realistic elastic behavior under moisture content variations. In this context, memory effect, experimentally observed, is introduced employing a mechano-sorptive stress driven by a function dependent of the moisture content variations. This new internal thermodynamic variable enables to define an original separation of the free energy into an instantaneous recoverable part and a stored part during the last drying phase. This energy enables the modeling of the nonreversible strain process during the unloading phase. The locate state method is employed in order to define the thermodynamic function which traduces an indirect hereditary behavior between moisture content history and the stress state in the material.

Elasticity Modeling Mechano-sorption Wood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazant, Z.P.: Thermodynamics of solidifying or melting viscoelastic material. J. Eng. Mech. Div. 105(EM6), 933–955 (1979) Google Scholar
  2. Bazant, Z.P.: Constitutive equation of wood at variable humidity and temperature. Wood Sci. Technol. 19, 159–177 (1985) CrossRefGoogle Scholar
  3. Bazant, Z.P., Carol, I.: Viscoelasticity with aging caused by solidifying of nonaging constituent. J. Eng. Mech. Div. 119(11), 2252–2269 (1993) CrossRefGoogle Scholar
  4. Chassagne, P., Bou-Saïd, E., Julien, J.F., Galimard, P.: Three dimensional creep model for wood under variable humidity-numerical analyses at different material scales. Mech. Time-Depend. Mater. 9, 203–223 (2006) Google Scholar
  5. Dubois, F.: Modélisations numériques des comportements viscoélastiques vieillissants des matériaux du génie civil. Habilitation à Diriger des Recherches, University of Limoges (2004) Google Scholar
  6. Dubois, F., Randriambololona, H., Petit, C.: Creep in wood under variable conditions: numerical modeling and experimental validation. Mech. Time-Depend. Mater. 9, 173–202 (2005) CrossRefGoogle Scholar
  7. Gril, J.: Une modélisation du comportement hygro-rhéologique du bois à partir de sa microstructure. Thesis, Ecole Polytechnique, University of Paris VI, Paris (1988) Google Scholar
  8. Gril, J.: Principles of mechano-sorption. In: International COST 508 Wood Mechanics Conference (1996) Google Scholar
  9. Grossman, P.U.A.: Requirements of models that exhibit mechanosorptive behavior. Wood Sci. Technol. 10, 163–168 (1976) CrossRefGoogle Scholar
  10. Habeger, C.C., Coffin, D.W., Hojjatie, B.: Influence of humidity cycling parameters on the moisture-accelerated creep of polymeric fibers. J. Polym. Sci., B, Polym. Phys. 39, 2048–2062 (2001) CrossRefGoogle Scholar
  11. Hanhijarvi, A.: Modeling of creep strain mechanism in wood. Thesis, Espoo University, Finland (1995) Google Scholar
  12. Hanhijarvi, A.: Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. Mater. Struct. 33, 43–49 (2000) CrossRefGoogle Scholar
  13. Hanhijarvi, A., Hunt, D.: The viscoelasticity of wood at varying moisture content. Wood Sci. Technol. 32, 57–70 (1998) CrossRefGoogle Scholar
  14. Haslach, H.W.: Time-dependent mechanisms in fracture of paper. Mech. Time-Depend. Mater. 13, 11–15 (2009) CrossRefGoogle Scholar
  15. Hunt, D.: Creep trajectories for beech during moisture changes under load. J. Mater. Sci. 19, 1456–1467 (1984) CrossRefGoogle Scholar
  16. Hunt, D.: Longitudinal moisture-shrinkage coefficients of softwood at the mechanosorptive creep limit. Wood Sci. Technol. 22, 199–210 (1988) CrossRefGoogle Scholar
  17. Lemaitre, J., Chaboche, J.L.: Mécanique des Matériaux Solides, Dunod, Paris (1988) Google Scholar
  18. Martensson, A.: Mechanical behavior of wood exposed to humidity variation. Thesis, Lund University, Sweden (1992) Google Scholar
  19. Mukuday, S., Yata, S.: Modeling and simulation of viscoelastic behavior (tensile strain) of wood under moisture change. Wood Sci. Technol. 20, 335–348 (1986) CrossRefGoogle Scholar
  20. Pittet, V.: Etude expérimentale des couplages mécanosorptifs dans le bois soumis à variations hygrométriques contrôlées sous chargement de longue durée. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne (1996) Google Scholar
  21. Randriambololona, H.: Modélisation du comportement différé du bois en environnement variable. Ph.D. Thesis, University of Limoges (2003) Google Scholar
  22. Ranta-Maunus, A.: The viscoelasticity of wood at varying moisture content. Wood Sci. Technol. 9, 189–205 (1975) CrossRefGoogle Scholar
  23. Salin, J.G.: Numerical prediction of checking during timber drying and a new mechanosorptive creep model. Holz Roh Werkst. 50, 195–200 (1992) CrossRefGoogle Scholar
  24. Toratti, T.: Creep of timber beams in variable environment. Ph.D. Thesis, Helsinki University of Technology (1992) Google Scholar

Copyright information

© Springer Science+Business Media, B. V. 2009

Authors and Affiliations

  1. 1.Heterogeneous Material Research Group (GEMH), Durability and Civil Engineering TeamUniversity of LimogesEgletonsFrance

Personalised recommendations