A 3D moisture-stress FEM analysis for time dependent problems in timber structures

Article

Abstract

This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.

Timber structures Moisture induced stresses Creep models Abaqus code 

References

  1. Abaqus: Abaqus/Standard, Theory Manual. Version 6.5. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket (2004a) Google Scholar
  2. Abaqus: Abaqus/Standard, User’s Manual. Version 6.5. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket (2004b) Google Scholar
  3. Aicher, S., Dill-Langer, G.: Effect of lamination anysotropy and lay-up in glued-laminated timbers. J. Struct. Eng. 131(7), 1095–1103 (2005) CrossRefGoogle Scholar
  4. André, J.: Strengthening of timber structures with flax fibres. Technical Report 61, Licentiate Thesis, Department of Civil, Mining and Environmental Engineering, Luleå University of Technology (2007) Google Scholar
  5. Avramidis, S.: Evaluation of the “three-variable” models for the prediction of equilibrium moisture content in wood. Wood Sci. Technol. 23, 251–258 (1989) CrossRefGoogle Scholar
  6. Avramidis, S., Siau, J.: An investigation of the external and internal resistance to moisture diffusion in wood. Wood Sci. Technol. 21, 249–256 (1987) CrossRefGoogle Scholar
  7. Chassagne, P., Bou-Saïd, E., Jullien, J., Galimard, P.: Three dimensional creep model for wood under variable humidity—numerical analyses at different material scales. Mech. Time-Depend. Mater. 9, 203–223 (2006) Google Scholar
  8. de Moura, M., Silva, M., de Morais, A., Morais, J.: Equivalent crack based mode ii fracture characterization of wood. Eng. Fract. Mech. 73, 978–993 (2006) CrossRefGoogle Scholar
  9. Dubois, F., Petit, C.: Modelling of the crack growth initiation in viscoelastic media by the Gθ v-integral. Eng. Fract. Mech. 72, 2821–2836 (2005) CrossRefGoogle Scholar
  10. Frandsen, H.: Selected constitutive models for simulating the hygromechanical response of wood. Technical Report no 10, Dissertation, Department of Civil Engineering, Aalborg University (2007) Google Scholar
  11. Hanhijärvi, A.: Modelling of creep deformation mechanisms in wood. Technical Report no 231, Dissertation, VTT Technical Research Centre of Finland (1995) Google Scholar
  12. Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. i: Orthotropic viscoelastic-mechanosorptive-plastic material model for the tranverse plane of wood. J. Eng. Mech. 129(9), 996–1005 (2003) CrossRefGoogle Scholar
  13. Helnwein, P.: Some remarks on the compressed matrix representation of symmetric second-order and fourth ordes tensors. Comput. Methods Appl. Mech. Eng. 190(22–23), 2753–2770 (2001) MATHCrossRefMathSciNetGoogle Scholar
  14. Jönsson, J.: Moisture induced stresses in timber structures. Technical Report TVBK-1031, Dissertation, Division of Structural Engineering, Lund University of Technology (2005) Google Scholar
  15. Leivo, M.: On the stiffness changes in nail plate trusses. Technical Report no 80, Dissertation, VTT Technical Research Centre of Finland (1991) Google Scholar
  16. Liyu, W., Zhenyou, L., Guangjie, Z.: Wood fracture pattern during the water adsorption process. Holzforschung 57(6), 639–643 (2003) CrossRefGoogle Scholar
  17. Mackenzie-Helnwein, P., Hanhijärvi, A.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. ii: Algorithmic aspects and practical application. J. Eng. Mech. 129(9), 1006–1016 (2003) CrossRefGoogle Scholar
  18. Mackenzie-Helnwein, P., Eberhardsteiner, J., Mang, H.: A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details. Comput. Mech. 31, 204–218 (2003) MATHCrossRefGoogle Scholar
  19. Malvern, L.: Introduction to the Mechanics of a Continuous Medium. Prentice–Hall, Englewood Clifs (1969) Google Scholar
  20. Marsden, J., Hughes, T.: Mathematical Foundation of Elasticity. Dover, New York (1992) Google Scholar
  21. Maugin, G.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992) MATHGoogle Scholar
  22. Ormarsson, S.: Numerical analysis of moisture-related distorsions in sawn timber. Technical Report Ny serie no 1531, Dissertation, Chalmers University of Technology (1999) Google Scholar
  23. Ranta-Maunus, A.: Effects of climate and climate variations on strength. In: Thelandersson, S., Larsen, H.J. (eds.) Timber Engineering. Wiley, New York (2003) Google Scholar
  24. Rosen, H.: The influence of external resistance on moisture adsorption rates in wood. Wood Fiber 10(3), 228–229 (1978) Google Scholar
  25. Santaoja, K., Leino, T., Ranta-Maunus, A., Hanhijärvi, A.: Mechano–sorptive structural analysis of wood by the Abaqus finite element program. Technical Report 1276, VTT Technical Research Centre of Finland (1991) Google Scholar
  26. Schmidt, J., Kaliske, M.: Models for numerical failure analysis of wooden structures. Eng. Struct. 31, 571–579 (2009) CrossRefGoogle Scholar
  27. Sih, G., Michopoulos, J., Chou, S.: Hygrothermoelasticity. Nijhoff, Dordrecht (1986) Google Scholar
  28. Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998) MATHGoogle Scholar
  29. Sjödin, J.: Steel-to-timber dowel joints—influence of moisture induced stresses. Technical Report no 31, Licentiate Thesis, Växjö University (2004) Google Scholar
  30. Toratti, T.: Creep of timber beams in a variable environment. Technical Report no 31/TRT, Dissertation, Helsinki University of Technology (1992) Google Scholar
  31. Toratti, T., Svensson, S.: Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci. Technol. 34, 317–326 (2000) CrossRefGoogle Scholar
  32. Toratti, T., Svensson, S.: Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci. Technol. 36, 145–156 (2002) CrossRefGoogle Scholar
  33. Vasic, S., Stanzl-Tschegg, S.: Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61, 367–374 (2007) CrossRefGoogle Scholar
  34. Vidal-Sallé, E., Chassagne, P.: Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model—application to wood material. Mech. Time-Depend. Mater. 11, 127–142 (2007) CrossRefGoogle Scholar
  35. Zuritz, C., Singh, R.P., Moini, S.M., Henderson, S.M.: Desorption isotherms of rough rice from 10°C to 40°C. Trans. ASAE 22, 433–440 (1979) Google Scholar

Copyright information

© Springer Science+Business Media, B. V. 2009

Authors and Affiliations

  • Stefania Fortino
    • 1
  • Florian Mirianon
    • 1
  • Tomi Toratti
    • 1
  1. 1.VTT Technical Research Centre of FinlandVTTFinland

Personalised recommendations