Advertisement

Mechanics of Time-Dependent Materials

, Volume 13, Issue 2, pp 183–197 | Cite as

Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions

  • Yoshihiko AraoEmail author
  • Jun Koyanagi
  • Shin Utsunomiya
  • Shin-ichi Takeda
  • Hiroyuki Kawada
Article

Abstract

The long-term micro-dimensional stability of a carbon fiber reinforced plastic (CFRP) mirror was investigated in terms of creep deformation, moisture swelling and self-shrinkage. A 4-point bending creep test was carried out using specimens made from pitch-based high-modulus CFRP laminates to obtain a creep constant based on linear viscoelasticity, and we then investigated the weight change and geometrical change during a moisture absorption test using a CFRP specimen. The anisotropic diffusivities and coefficients of moisture expansion (CMEs) in CFRP laminates were obtained by fitting analytical data into the experimental data. Finally, the shrinkage behavior caused by physical aging of the polymeric material was examined using a fiber Bragg grating (FBG) sensor embedded in the neat resin specimen. Applying these results, we analyzed the geometrical changes in a CFRP mirror that resulted from time-dependent deformation by the mirror’s weight, moisture absorption and physical aging, respectively. We discuss which factor is dominant in the deformation of CFRP mirrors under various conditions.

Keywords

Dimensional stability Creep Moisture absorption Physical aging CFRP mirror 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abysafieh, A., Federico, D., Connell, S., Cohen, E.J., Willis, P.B.: Dimensional stability of CFRP composites for space based reflectors. Proc. SPIE 4444, 9–16 (2001) CrossRefGoogle Scholar
  2. Arao, Y., Koyanagi, J., Hatta, H., Kawada, H.: Analysis of time-dependent deformation of CFRP considering the anisotropy of moisture diffusion. Adv. Compos. Mater. 17, 359–372 (2008) CrossRefGoogle Scholar
  3. Arao, Y., Koyanagi, J., Utsunomiya, S., Kawada, H.: Time-dependent out-of-plane deformation of UD-CFRP in humid environment. Compos. Sci. Technol. (2008, in press) Google Scholar
  4. Brinson, L.C.: Effects of physical aging on long term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32, 827–846 (1994) CrossRefGoogle Scholar
  5. Chen, P.C., Bowers, C.W., Content, D.A., Marzouk, M., Romeo, R.C.: Advance in very lightweight composite mirror technology. Opt. Eng. 39, 2320–2329 (2000) CrossRefGoogle Scholar
  6. Choi, H.S., Ahn, K.J., Nam, J.D.: Hygroscopic aspects of epoxy/carbon fiber composite laminates on aircraft environment. Compos. Part A 32, 709–720 (2001) CrossRefGoogle Scholar
  7. Hu, H., Sun, C.T.: The characterization of physical aging in polymeric composites. Compos. Sci. Technol. 60, 2693–2698 (2000) CrossRefGoogle Scholar
  8. Huang, Y., Paul, D.R.: Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 45, 8377–8393 (2004) CrossRefGoogle Scholar
  9. Ishikawa, T., Chou, T.W.: In-plane thermal expansion and thermal bending coefficients of fabric composites. J. Compos. Mater. 17, 92–104 (1983) CrossRefGoogle Scholar
  10. Jessen, N.C., Nielsen, H.U.N., Schroll, J.: CFRP lightweight structures for extremely large telescope. Compos. Struct. 82, 310–316 (2008) CrossRefGoogle Scholar
  11. Lang, M., Baier, H., Ernst, T.: High precision thin shell reflectors- design concepts, structural optimization and shape adjustment techniques. Eur. Space Agency Spec. Publ. 581, 349–358 (2005) Google Scholar
  12. Miyano, Y., Nakada, M.: Effect of physical aging on the creep deformation of an epoxy resin. Mech. Time-Depend. Mater. 4, 9–20 (2000) CrossRefGoogle Scholar
  13. Okabe, Y., Yashiro, S., Tsuji, R., Mizutani, T., Takeda, N.: Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminate. Composite Part A 33, 991–999 (2002) CrossRefGoogle Scholar
  14. Ozaki, T., Naito, K., Mikami, I., Yamauchi, H.: High precision composite pipes for SOLAR-B optical structures. Acta Astronaut. 48, 321–329 (2001) CrossRefGoogle Scholar
  15. Papanicolaou, G.C., Zaoutsos, S.P., Cardon, A.H.: Prediction of the non-linear viscoelastic response of unidirectional fiber composites. Compos. Sci. Technol. 59, 1311–1319 (1999) CrossRefGoogle Scholar
  16. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2(3), 380–404 (1968) CrossRefGoogle Scholar
  17. Shen, C.H., Springer, G.S.: Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 2–21 (1976) CrossRefGoogle Scholar
  18. Struik, L.C.E.: Physical aging in Plastics and other glassy materials. Polym. Eng. Sci. 17, 165–173 (1977) CrossRefGoogle Scholar
  19. Suiter, R.H.: Star Testing Astronomical Telescopes. Willmann-Bell Inc. (1994) Google Scholar
  20. Wolff, E.G.: Introduction to the Dimensional Stability of Composite Materials. DEStech Publications (2004) Google Scholar
  21. Zaoutsos, S.P., Papanicolaou, G.C., Cardon, A.H.: On the non-linear viscoelastic behavior of polymer-matrix composites. Compos. Sci. Technol. 58, 883–889 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B. V. 2009

Authors and Affiliations

  • Yoshihiko Arao
    • 1
    Email author
  • Jun Koyanagi
    • 2
  • Shin Utsunomiya
    • 2
  • Shin-ichi Takeda
    • 2
  • Hiroyuki Kawada
    • 3
  1. 1.Graduate School of Waseda UniversityTokyoJapan
  2. 2.Japan Aerospace Exploration AgencyKanagawaJapan
  3. 3.Department of Mechanical EngineeringWaseda UniversityTokyoJapan

Personalised recommendations