Mechanics of Time-Dependent Materials

, Volume 12, Issue 3, pp 189–203 | Cite as

Impact of time-dependency on long-term material testing and modeling of polyethylene



Ultra-high molecular weight polyethylene (UHMWPE) has an important role in orthopaedic implants because of its favorable properties as an articulating surface. UHMWPE component testing often focuses on measuring the long-term fatigue or wear response of the material that could be realized during many years of use. However, the impact of time-dependent properties of UHMWPE on such tests is not well characterized. In particular, altering the frequency of loading and allowing for material creep or relaxation can significantly alter the stress/strain state of the material, and therefore affect long-term mechanical properties (e.g. wear, fatigue) that are dependent on the constitutive state. The goal of this work is to use advanced, validated material modeling of UHMPWE that incorporates time-dependent properties to explore the effects of frequency and rest time on the mechanical response of UHMWPE.


UHMWPE Viscoplastic Compression Fatigue Creep Polyethylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, D.A., Bellare, A., Pruitt, L.: The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J. Biomed. Mater. Res. A 66, 146–154 (2003) CrossRefGoogle Scholar
  2. Baker, D.A., Hastings, R.S., Pruitt, L.: Compression and tension fatigue resistance of medical grade ultrahigh molecular weight polyethylene: the effect of morphology, sterilization, aging, and temperature. Polymer 41, 795–808 (2000) CrossRefGoogle Scholar
  3. Baker, D.A., Hastings, R.S., Pruitt, L.: Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene. J. Biomed. Mater. Res. 46, 573–581 (1999) CrossRefGoogle Scholar
  4. Bergström, J.S., Boyce, M.C.: Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech. Mat. 33(9), 523–530 (2001) CrossRefGoogle Scholar
  5. Bergström, J.S., Kurtz, S.M., Rimnac, C.M., Edidin, A.A.: Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23, 2329–2343 (2002) CrossRefGoogle Scholar
  6. Bergström, J.S., Rimnac, C.M., Kurtz, S.M.: Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model. Biomaterials 24, 1365–1380 (2003) CrossRefGoogle Scholar
  7. Bergström, J.S., Rimnac, C.M., Kurtz, S.M.: An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE. Biomaterials 25, 2171–2178 (2004) CrossRefGoogle Scholar
  8. Bergström, J.S., Bowden, A.E., Rimnac, C.M., Kurtz, S.M.: Development and implementation of an advanced user material model for UHMWPE. In: 9th International LS-DYNA Users’ Conference, Dearborn, MI, 4–6 June 2006 Google Scholar
  9. Bischoff, J.E.: Nonlinear material parameter estimation using inverse finite element analysis. In: Proc. 2007 ASME Summer Bioeng. Conf., Keystone, CO, 20–24 June 2007 Google Scholar
  10. Brown, T.D., Stewart, K.J., Nieman, J.C., Pedersen, D.R., Callaghan, J.J.: Local head roughening as a factor contributing to variability of total hip wear: a finite element analysis. J. Biomech. Eng. 124, 691–698 (2002) CrossRefGoogle Scholar
  11. Burroughs, B.R., Blanchet, T.A.: The effect of pre-irradiation vacuum storage on the oxidation and wear of radiation sterilized UHMWPE. Wear 261, 1277–1284 (2006) CrossRefGoogle Scholar
  12. D’Lima, D.D., Chen, P.C., Colwell, C.W. Jr.: Polyethylene contact stresses, articular congruity, and knee alignment. Clin. Orthop. Relat. Res. 392, 232–238 (2001) CrossRefGoogle Scholar
  13. D’Lima, D.D., Chen, P.C., Kester, M.A., Colwell, C.W. Jr.: : Impact of patellofemoral design on patellofemoral forces and polyethylene stresses. J. Bone Joint Surg. 85, 85–93 (2003) Google Scholar
  14. Fisher, J., Dowson, D.: Tribology of total artificial joints. J. Eng. Med. 205(H2), 73–79 (1991) CrossRefGoogle Scholar
  15. Fisher, J., McEwen, H.M.J., Tipper, J.L., Galvin, A.L., Ingram, J., Kamali, A., Stone, M.H., Ingham, E.: Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin. Orthop. Relat. Res. 428, 114–119 (2004) CrossRefGoogle Scholar
  16. Knight, L.A., Pal, S., Coleman, J.C., Bronson, F., Haider, H., Levine, D.L., Taylor, M., Rullkoetter, P.J.: Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J. Biomech. 40, 1550–1558 (2007) CrossRefGoogle Scholar
  17. Krzypow, D.J., Rimnac, C.M.: Cyclic steady state stress-strain behavior of UHMW polyethylene. Biomaterials 21, 2081–2087 (2000) CrossRefGoogle Scholar
  18. Kurtz, S.M., Villarraga, M.L., Herr, M.P., Bergström, J.S., Rimnac, C.M., Edidin, A.A.: Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23, 3681–3697 (2002) CrossRefGoogle Scholar
  19. Maxian, T.A., Brown, T.D., Pedersen, D.R., Callaghan, J.J.: Adaptive finite element modeling of long-term polyethylene wear in total hip arthroplasty. J. Orthop. Res. 14, 668–675 (1996) CrossRefGoogle Scholar
  20. Morlock, M., Schneider, E., Bluhm, A., Vollmer, M., Bergmann, G., Müller, V., Honl, M.: Duration and frequency of every day activities in total hip patients. J. Biomech. 34, 873–881 (2001) CrossRefGoogle Scholar
  21. Rawlinson, J.J., Furman, B.D., Li, S., Wright, T.M., Bartel, D.L.: Retrieval, experimental, and computational assessment of the performance of total knee replacements. J. Orthop. Res. 24, 1384–1394 (2006) CrossRefGoogle Scholar
  22. Sharma, A., Komistek, R.D., Scuderi, G.R., Cates, H.E. Jr.: High-flexion TKA designs. Clin. Orthop. Relat. Res. 464, 117–126 (2007) Google Scholar
  23. Teoh, S.H., Chan, W.H., Thampuran, R.: An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. J. Biomech. 35, 323–330 (2002) CrossRefGoogle Scholar
  24. Waldman, S.D., Bryant, J.T.: Compressive stress relaxation behavior of irradiated ultra-high molecular weight polyethylene at 37°C. J. Appl. Biomater. 5, 333–338 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B. V. 2008

Authors and Affiliations

  1. 1.Zimmer, Inc.WarsawUSA

Personalised recommendations