Mechanics of Time-Dependent Materials

, Volume 12, Issue 1, pp 15–30 | Cite as

A time and hydration dependent viscoplastic model for polyelectrolyte membranes in fuel cells

  • Roham Solasi
  • Yue Zou
  • Xinyu Huang
  • Kenneth Reifsnider


Ionomers are co-polymers with ionic groups. One of the interesting applications of ionomer membranes is as electrolytes in proton exchange membrane (PEM) fuel cells. The most commonly used membranes in PEM fuel cells are perfluorosulfonic acid (PFSA) membranes, e.g., Nafion® from DuPontTM. Besides its dependency on temperature and hydration due to phase inversion and cluster formation, Nafion® as a polymer, exhibits strong time and rate effects. In this work, the stress–strain behavior of Nafion® at different strain rates has been obtained in an environmental chamber for various temperatures and hydrations. After a certain strain was reached in each test, stress relaxation was performed for an hour to observe the relaxation behavior of Nafion®. We attempted to use a nonlinear, time-dependent constitutive model to predict the hygro-thermomechanical behavior of Nafion®. Because a substantial component of the response is unrecoverable, a viscoplastic model was employed. The proposed two-layer viscoplasticity model consisted of an elastoplastic network that was in parallel with an elastic-viscous network (Maxwell model) which separates the rate-dependent and rate-independent behavior of the material. After obtaining the necessary parameters for different hydrations, this model showed reasonably accurate success in predicting the stress–strain behavior at different strain rates, and matched the relaxation test results. Finite element simulations based on the proposed two-layer viscoplasticity model were in good agreement with test results and can be used to study the stress–strain state of the ionomer membranes in fuel cell configurations.


Nafion® Mechanical behavior Viscoplastic Relaxation Polymer membrane Fuel cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABAQUS Analysis User’s Manual, V 6.5. HKS (2005) Google Scholar
  2. Banerjee, S., Curtin, D.E.: Nafion(R) perfluorinated membranes in fuel cells. J. Fluor. Chem.: Fluor. Altern. Energy Sources 125(8), 1211–1216 (2004) Google Scholar
  3. Bauer, F., Willert-Porada, S.D.M.: Influence of temperature and humidity on the mechanical properties of Nafion®117 polymer electrolyte membrane. J. Polym. Sci. B 43(7), 786–795 (2005) CrossRefGoogle Scholar
  4. Bauer, F., Denneler, S., Willert-Porada, M.: Influence of temperature and humidity on the mechanical properties of Nafion®117 polymer electrolyte membrane. J. Polym. Sci. B 43(7), 786–795 (2005) CrossRefGoogle Scholar
  5. Benziger, J., et al.: The dynamic response of PEM fuel cells to changes in load. Chem. Eng. Sci. 60(6), 1743–1759 (2005) CrossRefGoogle Scholar
  6. Bergstrom, J.S., Boyce, M.C.: Large strain time-dependent behavior of filled elastomers. Mech. Mater. 32(11), 627–644 (2000) CrossRefGoogle Scholar
  7. Bergstrom, J.S., Hilbert, Jr., L.B.: A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers. Mech. Mater. 37(8), 899–913 (2005) CrossRefGoogle Scholar
  8. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 73(3), 504–523 (2000) Google Scholar
  9. Choi, P., Datta, R.: Sorption in proton-exchange membranes. An explanation of Schroeder’s paradox. J. Electrochem. Soc. 150(12) (2003) Google Scholar
  10. Christensen, R.M.: Theory of Viscoelasticity: An Introduction, 2nd edn., p. 364. Academic, New York (1982) Google Scholar
  11. E.I. du Pont de Nemours & Company: Physical Properties for Nafion Membrane – Types NR and NRE (2003).
  12. Gebel, G.: Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41(15), 5829–5838 (2000) CrossRefGoogle Scholar
  13. Gierke, T.D., Munn, G.E., Wilson, F.C.: The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Part A-2 Polym. Phys. 19(11), 1687–1704 (1981) Google Scholar
  14. Hinatsu, J.T., Mizuhata, M., Takenaka, H.: Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J. Electrochem. Soc. 141(6), 1493–1498 (1994) CrossRefGoogle Scholar
  15. Huang, X., et al.: Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. J. Polym. Sci. B 44(16), 2346–2357 (2006) CrossRefGoogle Scholar
  16. Kawano, Y., et al.: Stress–strain curves of nafion membranes in acid and salt forms. Polímeros 12(2), 96–101 (2002) CrossRefGoogle Scholar
  17. Kichenin, J., Dang Van, K., Boytard, K.: Finite-element simulation of a new two-dissipative mechanisms model for bulk medium-density polyethylene. J. Mater. Sci. 31(6), 1653–1661 (1996) CrossRefGoogle Scholar
  18. Kletschkowski, T., Schomburg, U., Bertram, A.: Endochronic viscoplastic material models for filled PTFE. Mech. Mater. 34(12), 795–808 (2002) CrossRefGoogle Scholar
  19. Kletschkowski, T., Schomburg, U., Subramanian, S.: Experimental investigations on the plastic memory effect of PTFE compound. J. Mater. Process. Manuf. Sci. 9(2), 113–130 (2000) CrossRefGoogle Scholar
  20. Kundu, S., et al.: Mechanical properties of Nafion electrolyte membranes under hydrated conditions. Polymer 46(25), 11707–11715 (2005) CrossRefGoogle Scholar
  21. Kusoglu, A., et al.: Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. J. Power Sources 161(2), 987–996 (2006) CrossRefGoogle Scholar
  22. Kyu, T., Eisenberg, A.: Underwater Stress Relaxation Studies of Nafion (Perfluorosulfonate) Ionomer Membranes. In: Journal of Polymer Science, Polymer Symposia. Waco, TX, USA (1984) Google Scholar
  23. Lai, Y.-H., et al.: Viscoelastic stress model and mechanical characterizaton of perfluorosulfonic acid (PFSA) polymer electrolyte membranes. In: Proceedings of the 3rd International Conference on Fuel Cell Science, Engineering, and Technology, 2005. Ypsilanti, MI (2005) Google Scholar
  24. Liu, D., et al.: Tensile behavior of nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations. J. Polym. Sci. B 44(10), 1453–1465 (2006) CrossRefGoogle Scholar
  25. Mauritz, K.A., Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(10), 4535–4585 (2004) CrossRefGoogle Scholar
  26. Morris, D.R., Sun, X.: Water-sorption and transport properties of Nafion 117 H. J. Appl. Polym. Sci. 50(8), 1445–1452 (1993) CrossRefGoogle Scholar
  27. Nielsen, L.E., Landel, R.F.: Mechanical Properties of Polymers and Composites, 2nd edn. Marcel Dekker, New York (1994) Google Scholar
  28. Rollet, A.-L., Diat, O., Gebel, G.: A new insight into nafion structure. J. Phys. Chem. B 106(12), 3033–3036 (2002) CrossRefGoogle Scholar
  29. Satterfield, M.B., et al.: Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. J. Polym. Sci. B 44(16), 2327–2345 (2006) CrossRefGoogle Scholar
  30. Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1(2), 209–240 (1997) CrossRefGoogle Scholar
  31. Solasi, R., et al.: Mechanical response of 3-layered MEA during RH and temperature variation based on mechanical properties measured under controlled T and RH. In: Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, FUELCELL2006 (2006) Google Scholar
  32. Solasi, R., et al.: On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. J. Power Sources 167(2), 366–377 (2007) CrossRefGoogle Scholar
  33. Springer, T.E., Zawodzinski, T.A., Gottesfeld, S.: Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138(8), 2334–2342 (1991) CrossRefGoogle Scholar
  34. Tang, Y., et al.: Stresses in proton exchange membranes due to hydration-dehydration cycles. In: Proceedings of the 3rd International Conference on Fuel Cell Science, Engineering, and Technology, 2005, Ypsilanti, MI (2005) Google Scholar
  35. Tang, Y., et al.: An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A 425(1–2), 297–304 (2006) Google Scholar
  36. Tang, Y., et al.: Stresses in proton exchange membranes due to hygro-thermal loading. J. Fuel Cell Sci. Technol. 3(2), 119–124 (2006) CrossRefGoogle Scholar
  37. Weber, A.Z., Newman, J.: Transport in polymer-electrolyte membranes. I. Physical model. J. Electrochem. Soc. 150(7) (2003) Google Scholar
  38. Weber, A.Z., Newman, J.: A theoretical study of membrane constraint in polymer-electrolyte fuel cells. AIChE J. 50(12), 3215–3226 (2004) CrossRefGoogle Scholar
  39. Yeo, S.C., Eisenberg, A.: Physical properties and supermolecular structure of perfluorinated ion-containing(nafion) polymers. J. Appl. Polym. Sci. 21(4), 875–898 (1977) CrossRefGoogle Scholar
  40. Zawodzinski, Jr., T.A., et al.: Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J. Phys. Chem. 95(15), 6040 (1991) CrossRefGoogle Scholar
  41. Zawodzinski, Jr., T.A., et al.: A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J. Electrochem. Soc. 140(7), 1981–1985 (1993) CrossRefGoogle Scholar
  42. Zou, Y.: Hygrothermal Mechanical Properties and Durability of Ionomer Membranes. In: Mechanical Engineering Department. University of Connecticut: Storrs, CT (2007) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Roham Solasi
    • 1
  • Yue Zou
    • 1
  • Xinyu Huang
    • 1
  • Kenneth Reifsnider
    • 1
  1. 1.Connecticut Global Fuel Cell CenterUniversity of ConnecticutStorrsUSA

Personalised recommendations