Mechanics of Time-Dependent Materials

, Volume 11, Issue 2, pp 127–142 | Cite as

Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model Application to wood material

Article

Abstract

This paper presents a nonlinear viscoelastic orthotropic constitutive equation applied to wood material. The proposed model takes into account mechanical and mechanosorptive creep via a 3D stress ratio and moisture change rate for a cylindrical orthotropic material. Orthotropic frame is based on the grain direction (L), radial (R) and hoop (T) directions, which are natural wood directions. Particular attention is taken to ensure the model to fulfill the necessary dissipation conditions. It is based on a rheological generalized Maxwell model with two elements in parallel in addition with a single linear spring taking into account the long term response. The proposed model is implemented in the finite element code ABAQUS/Standard® via a user subroutine UMAT and simple example is shown to demonstrate the capability of the proposed model. Future works would deal with damage and fracture prediction for wooden structures submitted to climate variations and mechanical loading.

Keywords

Nonlinear viscoelastic constitutive law Mechanosorption Cylindrical orthotropy ABAQUS code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfthan, J.: The effect of humidity cycle amplitude on accelerated tensile creep of paper. Mech. Time-Depend. Mater. 8, 289–302 (2004) CrossRefADSGoogle Scholar
  2. Armstrong, L.D., Kingston, R.S.T.: The effect of moisture content changes on the deformation of wood under stress. Austr. J. Appl. Sci. 13, 257–276 (1962) Google Scholar
  3. Bou Saïd, E.: Contribution à la modélisation des effets différés du bois et du béton sous conditions climatiques variables. Application aux structures mixtes bois-béton. Ph.D. thesis, INSA de Lyon (2003) 199 pp. Google Scholar
  4. Chassagne, P.: Contribution à la prédiction des conséquences mécaniques des phénomènes thermo-hydriques couplés: Application au bois. Ph.D. thesis, INSA de Lyon (2006) 163 pp. Google Scholar
  5. Chazal, C., Arfaoui, M.: Further development in thermodynamic approach for thermoviscoelastic materials. Mech. Time-Depend. Mater. 5, 177–198 (2001) CrossRefGoogle Scholar
  6. Dooling, P.J., Buckley, C.P.: The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: a constitutive model and its application to PMMA. Polym. Eng. Sci. 38(6), 892–904 (1998) CrossRefGoogle Scholar
  7. Dubois, F., Chazal, C., Petit, C.: A finite element analysis of creep-crack growth in viscoelastic media. Mech. Time-Depend. Mater. 2, 269–286 (1999) CrossRefGoogle Scholar
  8. Dubois, F., Randriambololona, H., Petit, C.: Creep in wood under variable climate conditions: numerical modeling and experimental validation. Mech. Time-Depend. Mater. 9, 173–202 (2005) CrossRefADSGoogle Scholar
  9. Guitard, D.: Mécanique du Matériau Bois et Composites. Cépaduès, Toulouse (1987) 238 pp. Google Scholar
  10. Habeger, C.C., Coffin, D.W., Hojjatie, B.: Influence of humidity cycling parameters on the moisture-accelerated creep of polymeric fibers. J. Polym. Sci. B Polym. Phys. 39, 2048–2062 (2001) CrossRefGoogle Scholar
  11. Hanhijärvi, A., Helnwein, P., Ranta-Maunus, A.: Two-dimensional material model for structural analysis of drying wood as viscoelastic-mechanosorptive-plastic material. In: 3rd European COST E15 Workshop on Wood Drying—Softwood Drying to Specific End-Uses, Helsinki, 11–13 June 2001, 10 pp. Google Scholar
  12. Helnwein, P., Hanhijärvi, A., Eberhardsteiner, J.: Long-term behavior of wood under multiaxial states of stress and simulation of structural details. In: Proceedings of the World Conference on Timber Engineering, Whistler Resort, BC, Canada, 31 July–3 August (2000) 8 pp. Google Scholar
  13. Hilton, H.H.: The significance of (an)isotropic viscoelastic Poisson ratio stress and time dependencies. Int. J. Solids Struct. 35, 3081–3095 (1998) MATHCrossRefGoogle Scholar
  14. Hunt, D.G.: A unified approach to creep of wood. Proc. Roy. Soc. Lond. A 455, 4077–4095 (1999) ADSCrossRefGoogle Scholar
  15. Kontou, E.: Modeling of postyield behavior of glassy polymers. J. Appl. Polym. Sci. 61, 2191–2195 (1996) CrossRefGoogle Scholar
  16. Lakes, R.S.: The time-dependent Poisson’s ration of viscoelastic materials can increase or decrease. Cellular Polym. 11, 466–469 (1992) Google Scholar
  17. Lemaître, J., Chaboche, J.L.: Mécanique des Matériaux Solides, 2ème édn. Dunod, Paris (1996) 539 pp. Google Scholar
  18. Liu, J.Y., Schaffer, E.L.: Duration of constant and ramp loading on strength of wood. J. Eng. Mech. 489–494 (1999) Google Scholar
  19. Mauget, B., Perré, P.: A large displacement formulation for anisotropic constitutive laws. Eur. J. Mech. A Solids 18(5), 859–877 (1999) MATHCrossRefGoogle Scholar
  20. Meijer, H.E.H., Govaert, L.E.: Multi-scale analysis of mechanical properties of amorphous polymer systems. Macromol. Chem. Phys. 204, 274–288 (2003) CrossRefGoogle Scholar
  21. Navi, P., Pittet, V., Plummer, C.J.G.: Transient moisture effects on wood creep. Wood Sci. Technol. 36, 447–462 (2002) CrossRefGoogle Scholar
  22. Obataya, E., Norimoto, M., Gril, J.: The effects of adsorbed water on dynamic mechanical properties of wood. Polymers 39(14), 3059–3064 (1998) CrossRefGoogle Scholar
  23. Passard, J., Perré, P.: Wood rheology and drying process. In: 3rd European COST E15 Workshop on Wood Drying—Softwood Drying to Specific End-Uses, Helsinki, 11–13 June 2001, 10 pp. Google Scholar
  24. Pittet, V.: Etude expérimentale des couplages mécanosorptifs dans le bois soumis à variations hydriques contrôlées sous chargement de longue durée, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (1996) 283 pp. Google Scholar
  25. Powel, R.E., Clark, C.R., Eyring, H.: A theory of the thermodynamic properties of large molecules. J. Chem. Phys. 9, 268–273 (1941) CrossRefADSGoogle Scholar
  26. Ree, T., Eyring, H.: Theory of non-newtonian flow. II. Solution system of high polymers. J. Appl. Phys. 26(7), 800–809 (1955) CrossRefADSGoogle Scholar
  27. Rémond, R.: Approche déterministe du séchage des avivés de résineux de fortes épaisseurs pour proposer des conduits industrielles adaptées. Ph.D. thesis, Ecole National du Génie Rural des Eaux et des Forêts, Centre de Nancy (2004) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratory of Solid and Contact Mechanics (LaMCoS) UMR 5259INSA de LyonVilleurbanne CedexFrance

Personalised recommendations