Skip to main content
Log in

An ultrahigh-resolution image encryption algorithm using random super-pixel strategy

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Almost all existing image encryption algorithms are only suitable for low-resolution images in the standard image library. When they are used to encrypt high-resolution images, they will inevitably suffer from inefficiency or program crashes. Inspired by the super-pixel concept in image processing, in this paper, a new image encryption algorithm using PRSP (Pseudo Random Super Pixel) strategy and KBCA (Key-based Cellular Automata) is proposed. Both scrambling and diffusion are implemented in parallel to improve the efficiency of encryption algorithm when encrypting ultra-high resolution images. Besides, random diffusion path is designed to ensure the security of encryption algorithm. Simulations are carried out using CUDA (Compute Unified Device Architecture) platform, and simulation results show the high efficiency and security of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcat Chaos 16(8):2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  2. Castro J-C-H, Sierra J-M, Seznec A, Izquierdo A, Ribagorda A (2005) The strict avalanche criterion randomness test. Math Comput Simul 68 (1):1–7. https://doi.org/10.1016/j.matcom.2004.09.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavusoglu U, Kacar S (2019) A novel parallel image encryption algorithm based on chaos. Clust Comput 22:1211–1223. https://doi.org/10.1007/s10586-018-02895-w

    Article  Google Scholar 

  4. Cao W, Mao Y, Zhou Y (2020) Designing a 2D infinite collapse map for image encryption. Signal Process 171:107457. https://doi.org/10.1016/j.sigpro.2020.107457

    Article  Google Scholar 

  5. Chai X, Fu X, Gan Z, Lu Y, Chen Y (2019) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62. https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

  6. Enayatifar R, Guimaraes F-G, Siarry P (2019) Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt Lasers Eng 115:131–140. https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  7. Enayatifar R, Abdullah A-H, Isnin I-F (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93. https://doi.org/10.1016/j.optlaseng.2013.12.003

    Article  Google Scholar 

  8. Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcat Chaos 08(06):1259–1284. https://doi.org/10.1142/S021812749800098X

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao W, Sun J, Qiao W, Zhang X (2019) Digital image encryption scheme based on generalized Mandelbrot-Julia set. Optik 185:917–929. https://doi.org/10.1016/j.ijleo.2019.02.007

    Article  Google Scholar 

  10. Ghadirli H-M, Nodehi A, Enayatifar R (2019) An overview of encryption algorithms in color images. Signal Process 164:163–185. https://doi.org/10.1016/j.sigpro.2019.06.010

    Article  Google Scholar 

  11. Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci 480:403–419. https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  12. Hayat U, Azam N-A (2019) A novel image encryption scheme based on an elliptic curve. Signal Process 155:391–402. https://doi.org/10.1016/j.sigpro.2018.10.011

    Article  Google Scholar 

  13. Han Y, Zhang Y (2010) Optical image encryption based on two beams’ interference. Opt Commun 283:1690–1692. https://doi.org/10.1016/j.optcom.2009.12.060

    Article  Google Scholar 

  14. Jithin KC, Sankar S (2020) Colour image encryption algorithm combining Arnold map, DNA sequence operation, and a Mandelbrot set. J Inform Secur Appl 50:102428. https://doi.org/10.1016/j.jisa.2019.102428

    Article  Google Scholar 

  15. Kumar R, Bhaduri B (2017) Optical image encryption using Kronecker product and hybrid phase masks. Opt Laser Technol 95:51–55. https://doi.org/10.1016/j.optlastec.2017.03.041

    Article  Google Scholar 

  16. Luo Y, Zhou R, Liu J, Cao Y, Ding X (2018) A parallel image encryption algorithm based on the piecewise linear chaotic map and hyper-chaotic map. Nonlinear Dyn 93:1165–1181. https://doi.org/10.1007/s11071-018-4251-9

    Article  Google Scholar 

  17. Liu H, Wang X (2011) Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt Commun 284:3895–3903. https://doi.org/10.1016/j.optcom.2011.04.001

    Article  Google Scholar 

  18. Li C, Luo G, Li C (2018) A parallel image encryption algorithm based on chaotic Duffing oscillators. Multimed Tools Appl 77:19193–19208. https://doi.org/10.1007/s11042-017-5391-5

    Article  Google Scholar 

  19. Liu M-Y, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2097–2104. https://doi.org/10.1109/CVPR.2011.5995323

  20. Lee W -K, C.-W.Phan R, Yap W-S, Goi B-M (2018) SPRING: A novel parallel chaos-based image encryption scheme. Nonlinear Dyn 92:575–593. https://doi.org/10.1007/s11071-018-4076-6

    Article  Google Scholar 

  21. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1356–1363. https://doi.org/10.1109/CVPR.2015.7298741

  22. Leng L, Zhang J, Khan M-K, Chen X, Alghathbar K (2010) Dynamic weighted discrimination power analysis: Anovel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):2543–2554. https://doi.org/10.5897/IJPS.9000180

    Article  Google Scholar 

  23. Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76:333–354. https://doi.org/10.1007/s11042-015-3058-7

    Article  Google Scholar 

  24. Mondal B, Singh S, Kumar P (2019) A secure image encryption scheme based on cellular automata and chaotic skew tent map. J Inform Secur Appl 45:117–130. https://doi.org/10.1016/j.jisa.2019.01.010

    Article  Google Scholar 

  25. Mahmud M, Atta-ur-Rahman Lee M, Choi J -Y (2020) Evolutionary-based image encryption using RNA codons truth table. Opt Laser Technol 121:105818. https://doi.org/10.1016/j.optlastec.2019.105818

    Article  Google Scholar 

  26. Norouzi B, Mirzakuchaki S (2014) A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn 78:995–1015. https://doi.org/10.1007/s11071-014-1492-0

    Article  Google Scholar 

  27. Niyat A-Y, Moattar M-H, Torshiz M-N (2017) Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt Lasers Eng 90:225–237. https://doi.org/10.1016/j.optlaseng.2016.10.019

    Article  Google Scholar 

  28. Ping P, Wu J, Mao Y, Xu F, Fan J (2018) Design of image cipher using life-like cellular automata and chaotic map. Signal Process 150:233–247. https://doi.org/10.1016/j.sigpro.2018.04.018

    Article  Google Scholar 

  29. Patro KA-K, Raghuvanshi A-S, Acharya B (2019) A parallel bit-plane operation based chaotic image encryption scheme. Proceedings of the Third International Conference on Microelectronics. Computing and Communication Systems 556:143–154. https://doi.org/10.1007/978-981-13-7091-5_13

    Article  Google Scholar 

  30. Ren X, Malik J (2003) Learning a classification model for segmentation. ICCV 1:10–17. https://doi.org/10.1109/ICCV.2003.1238308

    Article  Google Scholar 

  31. Shannon CE (1949) Communication theory of secrecy system. Bell Syst Tech J 28:656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian Z, Lin Y (2016) Video object segmentation based on supervoxel for multimedia corpus construction. Neurocomputing 215:128–137. https://doi.org/10.1016/j.neucom.2015.06.114

    Article  Google Scholar 

  33. Van den Bergh M, Boix X, Roig G, de Capitani B, Van Gool L (2012) SEEDS: Superpixels Extracted via energy-driven sampling. European Conference on Computer Vision 7578:13–26. https://doi.org/10.1007/s11263-014-0744-2

    Article  Google Scholar 

  34. Vaish A, Kumar M (2017) Color image encryption using MSVD, DWT and Arnold transform in fractional Fourier domain. Optik 145:273–283. https://doi.org/10.1016/j.ijleo.2017.07.041

    Article  Google Scholar 

  35. Wang M, Wang X, Zhang Y, Gao Z (2018) A novel chaotic encryption scheme based on image segmentation and multiple diffusion models. Opt Laser Technol 108:558–573. https://doi.org/10.1016/j.optlastec.2018.07.052

    Article  Google Scholar 

  36. Wang X, Feng L, Zhao H (2019) Fast image encryption algorithm based on parallel computing system. Inf Sci 486:340–358. https://doi.org/10.1016/j.ins.2019.02.049

    Article  MATH  Google Scholar 

  37. Wang H, Xiao D, Li M, Xiang Y, Li X (2019) A visually secure image encryption scheme based on parallel compressive sensing. Signal Process 155:218–232. https://doi.org/10.1016/j.sigpro.2018.10.001

    Article  Google Scholar 

  38. Wang X, Wu C, Xiang K, Chen W (2017) Efficient local and global contour detection based on superpixels. J Vis Commun Image Represent 48:77–87. https://doi.org/10.1016/j.jvcir.2017.06.005

    Article  Google Scholar 

  39. Wang H, Xiao D, Chen X, Huang H (2018) Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map. Signal Process 144:444–452. https://doi.org/10.1016/j.sigpro.2017.11.005

    Article  Google Scholar 

  40. Wang S, Wang C, Xu C (2019) An image encryption algorithm based on a hidden attractor chaos system and the Knuth–Durstenfeld algorithm. Opt Lasers Eng 128:105995. https://doi.org/10.1016/j.optlaseng.2019.105995

    Article  Google Scholar 

  41. Wang X, Zhang H, Bao X -M (2016) Color image encryption scheme using CML and DNA sequence operations. BioSystems 144:18–26. https://doi.org/10.1016/j.biosystems.2016.03.011

    Article  Google Scholar 

  42. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424. https://doi.org/10.1038/311419a0. https://ui.adsabs.harvard.edu/link_gateway/1984Natur.311..419W/

    Article  Google Scholar 

  43. Wolfram S (1986) Random sequence generation by cellular automata. Adv Appl Math 7:123–169. https://doi.org/10.1016/0196-8858(86)90028-X

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu Y, Zhou Y, Saveriades G, Agaian S (2013) P.noonan J, Natarajan P Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci 222:323–324. https://doi.org/10.1016/j.ins.2012.07.049

    Article  MATH  Google Scholar 

  45. Wu Y (2011) NPCR And UACI randomness tests for image encryption. Cyber J Multidisci J Sci Technol J Select Areas Telecommun (JSAT): 31–38

  46. Wu J, Liao X, Bo Y (2018) Image encryption using 2D hénon-sine map and DNA approach. Signal Process 153:11–23. https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  47. Wu X, Wang D, Kurths J, Kan H (2016) A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system. Inform Sci 349–350:137–153. https://doi.org/10.1016/j.ins.2016.02.041

    Article  Google Scholar 

  48. Xu M, Tian Z (2019) A novel image cipher based on 3D bit matrix and latin cubes. Inf Sci 478:1–14. https://doi.org/10.1016/j.ins.2018.11.010

    Article  Google Scholar 

  49. Zhang W, Zhu Z, Yu H (2019) A Symmetric image encryption algorithm based on a Coupled Logistic-Bernoulli map and cellular automata diffusion strategy. Entropy 21:504. https://doi.org/10.3390/e21050504

    Article  MathSciNet  Google Scholar 

  50. Zhang W, Yu H, Zhao Y-L, Zhu Z-L (2016) Image encryption based on three-dimensional bit matrix permutation. Signal Process 118:36–50. https://doi.org/10.1016/j.sigpro.2015.06.008

    Article  Google Scholar 

  51. Zhang Y (2020) The fast image encryption algorithm based on lifting scheme and chaos. Inf Sci 520:177–194. https://doi.org/10.1016/j.ins.2020.02.012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China(Grant Nos. 61977014, 61902056, 61603082), the Fundamental Research Funds for the Central Universitie (Grant Nos. N2017011, N2017016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Han.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Han, W., Zhu, Z. et al. An ultrahigh-resolution image encryption algorithm using random super-pixel strategy. Multimed Tools Appl 80, 33429–33454 (2021). https://doi.org/10.1007/s11042-021-11096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11096-4

Keywords

Navigation