Multimedia Tools and Applications

, Volume 78, Issue 23, pp 33023–33040 | Cite as

MonitorApp: a web tool to analyze and visualize pollution data detected by an electronic nose

  • Paolo Buono
  • Fabrizio BalducciEmail author


The analysis of air quality data may reveal the quality of life and can prevent dangers for the citizen health. Assuming that some chemical compounds in the air produce a bad smell, people may detect that something is going wrong acting as sensors that alerts potential risks. This work presents a visual analytics approach to support air quality experts in the analysis of data produced by electronic nose devices. The approach consists in setting workflows to manage and transform raw data offering clustering and visualization techniques to analyze such information. The analysis is supported by calendar, map and line graph visualization techniques also maneuvering the clustering attributes. The interactive map is used to show the position of monitoring stations in order to support making hypothesis related to the data source locations.


Visualization Clustering Workflow Air quality 



  1. 1.
    Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer, LondonCrossRefGoogle Scholar
  2. 2.
    Air pollution in world: Real-time air quality index visual map (2017), Last accessed on 2018-10-30
  3. 3.
    Bontempi G, Taieb SB, Le Borgne Y-A (2012) Machine learning strategies for time series forecasting. In: European Business Intelligence Summer School. Springer, pp. 62–77Google Scholar
  4. 4.
    Buono P, Balducci F (2018) A web app for visualizing electronic nose data. In: 2018 22nd International Conference Information Visualisation (IV), pp. 198–203Google Scholar
  5. 5.
    Buono P, Costabile MF (2012) Insights on the development of visual tools for analysis of pollution data. In: Distributed Multimedia Systems (DMS). Skokie, IL 60076, USA: Knowledge Systems Institute, Conference Proceedings, pp. 54–59.Google Scholar
  6. 6.
    Ceneda D, Aigner W, Bögl M, Gschwandtner T, Miksch S. Guiding the visualization of time-oriented dataGoogle Scholar
  7. 7.
    Ceneda D, Gschwandtner T, Miksch S, Tominski C. Guided visual exploration of cyclical patterns in time-series.Google Scholar
  8. 8.
    de Carvalho MB, Meiguins BS, de Morais JM (2016) Temporal data visualization technique based on treemap. In: Information Visualisation (IV), 2016 20th International Conference. IEEE, pp. 399–403Google Scholar
  9. 9.
    Ellis G, Mansmann F (2010) Mastering the information age solving problems with visual analytics. Eurographic 2:5Google Scholar
  10. 10.
    S. Ghazi, J. Dugdale, and T. Khadir (2016) Modelling air pollution crises using multiagent simulation. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 172–177.Google Scholar
  11. 11.
    Italian public administration open data (2017)., Last accessed on 2018-10-20
  12. 12.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM computing surveys (CSUR) 31(3):264–323CrossRefGoogle Scholar
  13. 13.
    Kandel S, Heer J, Plaisant C, Kennedy J, Van Ham F, Riche N, Weaver C, Lee B, Brodbeck D, Buono P (2011) Research directions in data wrangling: Visualizations and transformations for usable and credible data. Inf Vis 10(4):271–288CrossRefGoogle Scholar
  14. 14.
    Kappe CP, Bottinger M, Leitte H (2018) Exploring variability within ensembles of decadal climate predictions. IEEE Transactions on Visualization & Computer Graphics 1:1Google Scholar
  15. 15.
    Kappe C, Böttinger M, Leitte H (2018) Visual exploration of ensemble variability at the example of decadal climate predictions. In: EGU General Assembly Conference Abstracts, ser. EGU General Assembly Conference Abstracts, vol. 20, p. 10206.Google Scholar
  16. 16.
    Keim DA (2000) Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans Vis Comput Graph 6(1):59–78CrossRefGoogle Scholar
  17. 17.
    Kern M, Hewson T, Schfler A, Westermann R, Rautenhaus M (2018) Interactive 3d visual analysis of atmospheric fronts. IEEE Trans Vis Comput Graph:1Google Scholar
  18. 18.
    Li H, Fan H, Mao F (2016) A visualization approach to air pollution data explorationa case study of air quality index (pm2. 5) in Beijing, China. Atmosphere 7(3):35CrossRefGoogle Scholar
  19. 19.
    Makridakis S, Hibon M (1997) Arma models and the Box-Jenkins methodology. J Forecast 16(05):147–163CrossRefGoogle Scholar
  20. 20.
    Malik A, Maciejewski R, Collins TF, Ebert DS (2010) Visual analytics law enforcement toolkit. In: HST 2010 - IEEE Int. Conference on Technologies for Homeland Security. IEEE, pp. 222–228Google Scholar
  21. 21.
    Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2006) Handbook of machine olfaction: electronic nose technology. John Wiley & Sons, HobokenGoogle Scholar
  22. 22.
    B. Rajesh, A. Agarwal, and K. A. Saravanan (2014) Proficient modus operandi for scrutinize air pollution using wireless sensor network. In: 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pp. 1312–1316Google Scholar
  23. 23.
    Razip AM, Malik A, Afzal S, Potrawski M, Maciejewski R, Jang Y, Elmqvist N, Ebert DS (2014) A mobile visual analytics approach for law enforcement situation awareness. In: IEEE PacificVis 2014 - Visualization Symposium. IEEE, pp. 169–176Google Scholar
  24. 24.
    Sarikaya A, Correll M, Bartram L, Tory M, Fisher D (2018) What do we talk about when we talk about dashboards? IEEE Trans Vis Comput Graph:1Google Scholar
  25. 25.
    Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156(3–4):183–207CrossRefGoogle Scholar
  26. 26.
    Sharma G, Shroff G, Pandey A, Singh B, Sehgal G, Paneri K, Agarwal P (2015) Multi-sensor visual analytics supported by machine-learning models. In: Data Mining Workshop (ICDMW), 2015 IEEE International Conference on. IEEE, pp. 668–674Google Scholar
  27. 27.
    Wang S, Zhang C, Huang Y, Li W (2010) Volume rendering and clipping for air pollution visualization. In: 2010 2nd International Conference on Information Engineering and Computer Science, pp. 1–4.Google Scholar
  28. 28.
    Wijk JJV, Selow ERV (1999) Cluster and calendar based visualization of time series data. In: Information Visualization, 1999. (Info Vis ‘99) Proceedings. 1999 IEEE Symposium on, 140: 4–9Google Scholar
  29. 29.
    Zhou M, Wang R, Mai S, Tian J (2016) Spatial and temporal patterns of air quality in the three economic zones of china. Journal of Maps 12(sup1):156–162CrossRefGoogle Scholar
  30. 30.
    Zhu J, Hu Y, Qin C, Yin LZ (2012) Simulation analysis of air pollution dispersion based on interactive virtual geographic environment. In: IET International Conference on Information Science and Control Engineering 2012 (ICISCE 2012), pp. 1–4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Bari Aldo MoroBariItaly

Personalised recommendations