Advertisement

Reversible data hiding in binary images based on image magnification

  • Fang Zhang
  • Wei LuEmail author
  • Hongmei Liu
  • Yuileong Yeung
  • Yingjie Xue
Article
  • 29 Downloads

Abstract

Over the past few years, many methods have been proposed for reversible data hiding in digital images, but few have been applied to binary images. The existing methods mainly employ run-length to embed the secret message, but the capacity is low. In this paper, we propose a reversible data hiding method based on image magnification. Firstly, image cross-shape patterns are analyzed to select the reference block pattern. Then, to improve the capacity and ensure reversibility, an image magnification strategy based on the reference block pattern is designed to scale up the original image to get the reference image. Finally, to ensure the visual quality of stego image, an inner-block flippable pixel selection strategy is designed to embed data. Experimental results have demonstrated that the proposed reversible data hiding scheme can restore the original image after extracting the embedded message, and achieve high embedding capacity and good visual quality.

Keywords

Reversible data hiding Cross-shape pattern Reference block pattern Image magnification 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), the Key Project of Scientific Research Plan of Guangzhou (No. 201804020068), Shanghai Minsheng Science and Technology Support Program (17DZ1205500), Shanghai Sailing Program (17YF1420000), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

References

  1. 1.
    Abd El-Latif A, Abd-El-Atty B, Hossain MS, Rahman A, Alamri A, Gupta BB (2018) Efficient quantum information hiding for remote medical image sharing acknowledgement. IEEE Access 6:21,075–21,083CrossRefGoogle Scholar
  2. 2.
    Cao H, Kot AC (2013) On establishing edge adaptive grid for bilevel image data hiding. IEEE Trans Inf Forensic Secur 8(9):1508–1518CrossRefGoogle Scholar
  3. 3.
    Cao G, Zhao Y, Ni R, Li X (2014) Contrast enhancement-based forensics in digital images. IEEE Trans Inf Forensic Secur 9(3):515–525CrossRefGoogle Scholar
  4. 4.
    Chen L, Lu W, Ni J (2012) An image region description method based on step sector statistics and its application in image copy-rotate/flip-move forgery detection. Int J Digit Crime Forensic 4(1):49–62CrossRefGoogle Scholar
  5. 5.
    Chen L, Lu W, Ni J, Sun W, Huang J (2013) Region duplication detection based on harris corner points and step sector statistics. J Vis Commun Image Represent 24(3):244–254CrossRefGoogle Scholar
  6. 6.
    Chen X, Weng J, Lu W, Xu J, Weng J (2017) Deep manifold learning combined with convolutional neural networks for action recognition. IEEE Trans Neural Netw Learn Syst 29(9):3938–3952Google Scholar
  7. 7.
    Chen J, Lu W, Yeung Y, Xue Y, Liu X, Lin C, Zhang Y (2018) Binary image steganalysis based on distortion level co-occurrence matrix. Comput Mater Contin 55(2):201–211Google Scholar
  8. 8.
    Chen J, Lu W, Fang Y, Liu X, Yeung Y, Xue Y (2018) Binary image steganalysis based on local texture pattern. J Vis Commun Image Represent 55:149–156CrossRefGoogle Scholar
  9. 9.
    Chen X, Weng J, Lu W, Xu J (2018) Multi-gait recognition based on attribute discovery. IEEE Trans Pattern Anal Mach Intell 40(7):1697–1710CrossRefGoogle Scholar
  10. 10.
    Cheng J, Kot AC (2007) Objective distortion measure for binary text image based on edge line segment similarity. IEEE Trans Image Process 16(6):1691–1695MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chiew KL, Pieprzyk J (2010) Binary image steganographic techniques classification based on multi-class steganalysis. In: International conference on information security practice and experience, Seoul, pp 341–358Google Scholar
  12. 12.
    Dragoi IC, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Feng B, Lu W, Sun W (2014) High capacity data hiding scheme for binary images based on minimizing flipping distortion. In: International workshop on digital watermarking, Auckland, pp 514–528Google Scholar
  14. 14.
    Feng B, Lu W, Sun W (2015) Binary image steganalysis based on pixel mesh markov transition matrix. J Vis Commun Image Represent 26(C):284–295CrossRefGoogle Scholar
  15. 15.
    Feng B, Lu W, Sun W (2015) Novel steganographic method based on generalized k-distance n-dimensional pixel matching. Multimed Tools Appl 74(21):9623–9646CrossRefGoogle Scholar
  16. 16.
    Feng B, Lu W, Sun W (2015) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inf Forensic Secur 10(2):243–255CrossRefGoogle Scholar
  17. 17.
    Feng B, Lu W, Sun W, Huang J, Shi YQ (2016) Robust image watermarking based on tucker decomposition and adaptive-lattice quantization index modulation. Signal Process Image Commun 41(C):1–14CrossRefGoogle Scholar
  18. 18.
    Feng B, Weng J, Lu W, Pei B (2017) Multiple watermarking using multilevel quantization index modulation. In: International workshop on digital watermarking, Beijing, China, pp 312–326Google Scholar
  19. 19.
    Feng B, Weng J, Lu W, Pei B (2017) Steganalysis of content-adaptive binary image data hiding. J Vis Commun Image Represent 46:119–127CrossRefGoogle Scholar
  20. 20.
    Grangier D, Bengio S (2008) A discriminative kernel-based approach to rank images from text queries. IEEE Trans Pattern Anal Mach Intell 30(8):1371–1384CrossRefGoogle Scholar
  21. 21.
    Guo M, Zhang H (2010) High capacity data hiding for binary image authentication. In: International conference on pattern recognition, Istanbul, Turkey, pp 1441–1444Google Scholar
  22. 22.
    He Z, Lu W, Sun W, Huang J (2012) Digital image splicing detection based on markov features in dct and dwt domain. Pattern Recogn 45(12):4292–4299CrossRefGoogle Scholar
  23. 23.
    Ho YA, Chan YK, Wu H, Chu YP (2009) High-capacity reversible data hiding in binary images using pattern substitution. Comput Stand Interfaces 31 (4):787–794CrossRefGoogle Scholar
  24. 24.
    Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern, Part C 41(6):765–781CrossRefGoogle Scholar
  25. 25.
    Jung KH, Yoo KY (2009) Data hiding method using image interpolation. Comput Stand Interfaces 31(2):465–470CrossRefGoogle Scholar
  26. 26.
    Kim C, Baek J, Fisher PS (2014) Lossless data hiding for binary document images using n -pairs pattern. In: International conference on information security and cryptology, pp 317–327Google Scholar
  27. 27.
    Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100CrossRefGoogle Scholar
  29. 29.
    Li J, Lu W (2016) Blind image motion deblurring with l0-regularized priors. J Vis Commun Image Represent 40:14–23CrossRefGoogle Scholar
  30. 30.
    Li J, Yang F, Lu W, Sun W (2016) Keypoint-based copy-move detection scheme by adopting mscrs and improved feature matching. Multimed Tools Appl 76 (20):20,483–20,497CrossRefGoogle Scholar
  31. 31.
    Li J, Lu W, Weng J, Mao Y, Li G (2018) Double jpeg compression detection based on block statistics. Multimedia Tools and Applications 77:31895–31910CrossRefGoogle Scholar
  32. 32.
    Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76 (20):20,739–20,753CrossRefGoogle Scholar
  33. 33.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156CrossRefGoogle Scholar
  34. 34.
    Liao X, Guo S, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10,033–10,050CrossRefGoogle Scholar
  35. 35.
    Lin C, Lu W, Huang X, Liu K, Sun W, Lin H (2018) Copy-move forgery detection using combined features and transitive matching. In: International conference on cloud computing and security, pp 1–12Google Scholar
  36. 36.
    Lin C, Lu W, Sun W, Zeng J, Xu T, Lai JH (2018) Region duplication detection based on image segmentation and keypoint contexts. Multimed Tools Appl 77(11):14,241–14,258CrossRefGoogle Scholar
  37. 37.
    Liu J, Lu W, Liu K, Huang X, Lin C, Liu X (2018) Copy-move forgery detection based on super pixel segmentation. Journal of Applied SciencesGoogle Scholar
  38. 38.
    Liu X, Lu W, Huang T, Liu H, Xue Y, Yeung Y (2018) Scaling factor estimation on jpeg compressed images by cyclostationarity analysis. Multimedia Tools and Applications:1–18.  https://doi.org/10.1007/s11042-018-6411-9
  39. 39.
    Liu X, Lu W, Zhang Q, Huang J, Shi YQ (2019) Downscaling factor estimation on pre-jpeg compressed images. IEEE Transactions on Circuits and Systems for Video TechnologyGoogle Scholar
  40. 40.
    Lu H, Kot AC, Cheng J (2003) Secure data hiding in binary document images for authentication. In: International symposium on circuits and systems, Bangkok, Thailand, pp 806–809Google Scholar
  41. 41.
    Lu H, Kot AC, Shi YQ (2004) Distance-reciprocal distortion measure for binary document images. IEEE Signal Process Lett 11(2):228–231CrossRefGoogle Scholar
  42. 42.
    Lu W, He L, Yeung Y, Xue Y, Liu H, Feng B (2018) Secure binary image steganography based on fused distortion measurement. IEEE Transactions on Circuits and Systems for Video TechnologyGoogle Scholar
  43. 43.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193CrossRefGoogle Scholar
  44. 44.
    Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl 75(21):13,557–13,583CrossRefGoogle Scholar
  45. 45.
    Malik A, Sikka G, Verma HK (2017) An image interpolation based reversible data hiding scheme using pixel value adjusting feature. Multimed Tools Appl 76(11):13,025–13,046CrossRefGoogle Scholar
  46. 46.
    Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. KSII Trans Internet Inf Syst 9(5):1938–1962Google Scholar
  47. 47.
    Muhammad K, Sajjad M, Baik SW (2016) Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. J Med Syst 40(5):1–16CrossRefGoogle Scholar
  48. 48.
    Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic lsb substitution method (m-lsb-sm) using multi-level encryption and achromatic component of an image. Multimed Tools Appl 75(22):14,867–14,893CrossRefGoogle Scholar
  49. 49.
    Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2017) Cisska-lsb: color image steganography using stego key-directed adaptive lsb substitution method. Multimed Tools Appl 76(6):8597–8626CrossRefGoogle Scholar
  50. 50.
    Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2018) Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Futur Gener Comput Syst 86:951–960CrossRefGoogle Scholar
  51. 51.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  52. 52.
    Ogiela L, Ogiela MR (2017) Insider threats and cryptographic techniques in secure information management. IEEE J Mag 11(2):405–414Google Scholar
  53. 53.
    Ogiela L, Ogiela MR (2017) Security of visual codes in service management in the cloud. In: International conference on intelligent informatics and biomedical sciences, pp 165–168Google Scholar
  54. 54.
    Ogiela U, Takizawa M, Ogiela L (2018) Visual captcha application in linguistic cryptography. Concurr Comput Pract Exper 30(2):1–8Google Scholar
  55. 55.
    Ou B, Li X, Zhao Y, Ni R, Shi Y-Q (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Qian Z, Zhang X, Wang S (2014) Reversible data hiding in encrypted jpeg bitstream. IEEE Trans Multimed 16(5):1486–1491CrossRefGoogle Scholar
  57. 57.
    Shi YQ, Sun H (1999) Image and video compression for multimedia engineering: fundamentals, algorithms, and standards. CRC Press, Boca RatonCrossRefGoogle Scholar
  58. 58.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  59. 59.
    Tsai CL, Chiang HF, Fan KC, Chung CD (2005) Reversible data hiding and lossless reconstruction of binary images using pair-wise logical computation mechanism. Pattern Recogn 38(11):1993–2006CrossRefGoogle Scholar
  60. 60.
    Tseng Y-C, Chen Y-Y, Pan H-K (2002) A secure data hiding scheme for binary images. IEEE Trans Commun 50(8):1227–1231CrossRefGoogle Scholar
  61. 61.
    Wang R, Lu W, Xiang S, Zhao X, Wang J (2018) Digital image splicing detection based on markov features in qdct and qwt domain. International Journal of Digital Crime and Forensics 10(4):271117–024038Google Scholar
  62. 62.
    Wei Z, Ma K-K (2013) Contrast-guided image interpolation. IEEE Trans Image Process 22(11):4271–4285MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Weng S, Yao Z, Pan JS, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15(20):721–724CrossRefGoogle Scholar
  64. 64.
    Wu M, Liu B (2004) Data hiding in binary image for authentication and annotation. IEEE Trans Multimed 6(4):528–538CrossRefGoogle Scholar
  65. 65.
    Wu H, Weng J, Chen X, Lu W (2018) Feedback weight convolutional neural network for gait recognition. J Vis Commun Image Represent 55:424–432CrossRefGoogle Scholar
  66. 66.
    Xiao H, Lu W, Li R, Zhong N, Yeung Y, Chen J, Xue F, Sun W (2019) Defocus blur detection based on multiscale SVD fusion in gradient domain. J Vis Commun Image Represent 59:52–61CrossRefGoogle Scholar
  67. 67.
    Xie Z, Lu W, Liu X, Xue Y, Yeung Y (2018) Copy-move detection of digital audio based on multi-feature decision. J Inf Secur Appl 43:37–46Google Scholar
  68. 68.
    Xu Z, Lu W, Zhang Q, Yeung Y, Chen X (2018) Gait recognition based on capsule network. IEEE Transactions on Circuits and Systems for Video TechnologyGoogle Scholar
  69. 69.
    Xuan G, Shi YQ, Chai P, Tong X, Teng J, Li J (2008) Reversible binary image data hiding by run-length histogram modification. In: International Conference on Pattern Recognition, Tampa, FL, pp 1–4Google Scholar
  70. 70.
    Xue F, Ye Z, Lu W, Liu H, Li B (2017) Mse period based estimation of first quantization step in double compressed jpeg images. Signal Process Image Commun 57:76–83CrossRefGoogle Scholar
  71. 71.
    Xue F, Lu W, Ye Z, Liu H (2018) JPEG image tampering localization based on normalized gray level co-occurrence matrix. Multimedia Tools and ApplicationsGoogle Scholar
  72. 72.
    Xue Y, Liu W, Lu W, Yeung Y, Liu X, Liu H (2018) Efficient halftone image steganography based on dispersion degree optimization. J Real-Time Image Proc:1–9.  https://doi.org/10.1007/s11554-018-0822-8
  73. 73.
    Yang H, Kot AC (2007) Pattern-based data hiding for binary image authentication by connectivity-preserving. IEEE Trans Multimed 9(3):475–486CrossRefGoogle Scholar
  74. 74.
    Yang CHT, Hsu YT, Wu CC, Chang JW (2014) Reversible data hiding method based on exclusive-or with two host images. In: International conference on trustworthy systems and their applications, pp 69–74Google Scholar
  75. 75.
    Yang F, Li J, Lu W, Weng J (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intell 59:73–83CrossRefGoogle Scholar
  76. 76.
    Yang H, Kot AC, Rahardja S (2008) Orthogonal data embedding for binary images in morphological transform domain-a high-capacity approach. IEEE Trans Multimed 10(3):339–351CrossRefGoogle Scholar
  77. 77.
    Yi Z, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111CrossRefGoogle Scholar
  78. 78.
    Yu C, Li J, Li X, Ren X, Gupta BB (2018) Four-image encryption scheme based on quaternion fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585–4608CrossRefGoogle Scholar
  79. 79.
    Yuan Y, Lu W, Feng B, Weng J (2017) Steganalysis with CNN using multi-channels filtered residuals. International Conference on Cloud Computing and Security 10602:110–120Google Scholar
  80. 80.
    Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238CrossRefGoogle Scholar
  81. 81.
    Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783CrossRefGoogle Scholar
  82. 82.
    Zhang X, Wu X (2008) Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation. IEEE Trans Image Process 17(6):887–896MathSciNetCrossRefGoogle Scholar
  83. 83.
    Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-embedding. IEEE Trans Image Process 20(2):485–495MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Zhang Q, Lu W, Weng J (2016) Joint image splicing detection in dct and contourlet transform domain. J Vis Commun Image Represent 40:449–458CrossRefGoogle Scholar
  85. 85.
    Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on l0-regularization and kernel shape optimization. Multimedia Tools and Applications 77(20):26239–26257CrossRefGoogle Scholar
  86. 86.
    Zhang Q, Lu W, Wang R, Li G (2018) Digital image splicing detection based on markov features in block dwt domain. Multimedia Tools and Applications 77(23):31239–31260CrossRefGoogle Scholar
  87. 87.
    Zhang J, Lu W, Yin X, Liu W, Yeung Y (2019) Binary image steganography based on joint distortion measurement. J Vis Commun Image Represent 58:600–605CrossRefGoogle Scholar
  88. 88.
    Zhao Z, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. AEU - Int J Electron Commun 65(10):814–826CrossRefGoogle Scholar
  89. 89.
    Zheng Q, Wang X, Khan MK, Zhang W, Gupta BB, Guo W (2018) A lightweight authenticated encryption scheme based on chaotic scml for railway cloud service. IEEE Access 6(99):711–722CrossRefGoogle Scholar
  90. 90.
    Zou L, Sun J, Gao M, Wan W, Gupta BB (2018) A novel coverless information hiding method based on the average pixel value of the sub-images. Multimedia Tools and Applications:1–16.  https://doi.org/10.1007/s11042-018-6444-0

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Data and Computer Science, Guangdong Key Laboratory of Information Security Technology, Key Laboratory of Machine Intelligence and Advanced Computing (Ministry of Education)Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations