Advertisement

Multimodal biometric system for ECG, ear and iris recognition based on local descriptors

  • Meryem RegouidEmail author
  • Mohamed Touahria
  • Mohamed Benouis
  • Nicholas Costen
Article
  • 4 Downloads

Abstract

Combination of multiple information extracted from different biometric modalities in multimodal biometric recognition system aims to solve the different drawbacks encountered in a unimodal biometric system. Fusion of many biometrics has proposed such as face, fingerprint, iris…etc. Recently, electrocardiograms (ECG) have been used as a new biometric technology in unimodal and multimodal biometric recognition system. ECG provides inherent the characteristic of liveness of a person, making it hard to spoof compared to other biometric techniques. Ear biometrics present a rich and stable source of information over an acceptable period of human life. Iris biometrics have been embedded with different biometric modalities such as fingerprint, face and palm print, because of their higher accuracy and reliability. In this paper, a new multimodal biometric system based ECG-ear-iris biometrics at feature level is proposed. Preprocessing techniques including normalization and segmentation are applied to ECG, ear and iris biometrics. Then, Local texture descriptors, namely 1D-LBP (One D-Local Binary Patterns), Shifted-1D-LBP and 1D-MR-LBP (Multi-Resolution) are used to extract the important features from the ECG signal and convert the ear and iris images to a 1D signals. KNN and RBF are used for matching to classify an unknown user into the genuine or impostor. The developed system is validated using the benchmark ID-ECG and USTB1, USTB2 and AMI ear and CASIA v1 iris databases. The experimental results demonstrate that the proposed approach outperforms unimodal biometric system. A Correct Recognition Rate (CRR) of 100% is achieved with an Equal Error Rate (EER) of 0.5%.

Keywords

ECG EAR IRIS 1D-LBP Shifted-1D-LBP 1D-MR-LBP CRR EER 

Notes

References

  1. 1.
    Al-Hamdani O, Chekima A, Dargham J, Salleh S, Numan F, Hussain H et al (2013, 01). Multimodal Biometrics Based on Identification and Verification System. 04Google Scholar
  2. 2.
    AMI Ear Database, Esther Gonzalez,Luis Alvarez and Luis Mazorra CTIM. Centro de I+D de Tecnologias de l’ Imagen Universidad de Las Palmas de G.C. http://www.ctim.es/research_works/ami_ear_database/
  3. 3.
    Annapurani K, Sadiq MA, Malathy C (2015) Fusion of shape of the ear and tragus--a unique feature extraction method for ear authentication system. Expert Syst Appl 42(1):649–656CrossRefGoogle Scholar
  4. 4.
    Anwar AS, Ghany KK, Elmahdy H (2015) Human ear recognition using geometrical features extraction. Procedia Comput Sci 65:529–537CrossRefGoogle Scholar
  5. 5.
    Barpanda SS, Sa PK, Marques O, Majhi B, Bakshi S (2018) Iris recognition with tunable filter bank based feature. Multimed Tools Appl 77(6):7637–7674CrossRefGoogle Scholar
  6. 6.
    Barra S, Casanova A, Fraschini M, Nappi M (2017) Fusion of physiological measures for multimodal biometric systems. Multimed Tools Appl 76(4):4835–4847CrossRefGoogle Scholar
  7. 7.
    Bassiouni MM, El-Dahshan E-SA, Khalefa W, Salem AM (2018) Intelligent hybrid approaches for human ECG signals identification. SIViP 12(5):941–949CrossRefGoogle Scholar
  8. 8.
    Belgacem N, Nait-ali A, Fournier R, Bereksi Reguig F (2013) ECG Based Human Identification Using Random Forests. The International Conference on E-Technologies and Business on the Web (EBW2013). Bangkok, ThailandGoogle Scholar
  9. 9.
    Benaliouche H, Touahria M (2014) Comparative study of multimodal biometric recognition by fusion of iris and fingerprint. Sci World J 2014Google Scholar
  10. 10.
    Bhanu B, Chen H (2003) Human ear recognition in 3D. In Workshop on Multimodal User Authentication (Vol 12 pp 91–98)Google Scholar
  11. 11.
    Biel L, Pettersson O, Philipson L, Wide P (2001) ECG analysis: a new approach in human identification. IEEE Trans Instrum Meas 50(3):808–812CrossRefGoogle Scholar
  12. 12.
    Boumbarov O, Velchev Y, Tonchev K, Paliy I (2011) Face and ECG based multi-modal biometric authentication. Dans Advanced biometric technologies. InTechGoogle Scholar
  13. 13.
    Chakraborty S, Mitra M, Pal S (2016) Biometric analysis using fused feature set from side face texture and electrocardiogram. IET Sci Meas Technol 11(2):226–233CrossRefGoogle Scholar
  14. 14.
    Chatlani N, Soraghan JJ (2010) Local binary patterns for 1-D signal processing. Signal Processing Conference, 2010 18th European, (pp 95–99)Google Scholar
  15. 15.
    Chun SY (2016) Single pulse ECG-based small scale user authentication using guided filtering. Biometrics (ICB), 2016 International Conference on, (pp 1–7)Google Scholar
  16. 16.
    Czajka A, Bowyer KW, Krumdick M, VidalMata RG (2017) Recognition of image-orientation-based iris spoofing. IEEE Trans Inf Forensics Secur 12(9):2184–2196CrossRefGoogle Scholar
  17. 17.
    Dagnes N, Vezzetti E, Marcolin F, Tornincasa S (2018) Occlusion detection and restoration techniques for 3D face recognition: a literature review. Mach Vis Appl 1–25Google Scholar
  18. 18.
    Dar MN, Akram MU, Shaukat A, Khan MA (2015) ECG based biometric identification for population with normal and cardiac anomalies using hybrid HRV and DWT features. IT Convergence and Security (ICITCS), 2015 5th International Conference on, (pp 1–5)Google Scholar
  19. 19.
    Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161CrossRefGoogle Scholar
  20. 20.
    Emeršič Ž, Štruc V, Peer P (2017) Ear recognition: more than a survey. Neurocomputing 255:26–39CrossRefGoogle Scholar
  21. 21.
    Ertuğrul F, Kaya Y, Tekin R, Almal MN (2016) Detection of Parkinson's disease by shifted one dimensional local binary patterns from gait. Expert Syst Appl 56:156–163CrossRefGoogle Scholar
  22. 22.
    Ghoualmi L, Chikhi S, Draa A (2014) A SIFT-based feature level fusion of iris and ear biometrics. IAPR Workshop on Multimodal Pattern Recognition of Social Signals in Human-Computer Interaction, (pp 102–112)Google Scholar
  23. 23.
    Ghoualmi L, Draa A, Chikhi S (2015) Ear feature extraction using a dwt-sift hybrid. Dans Intelligent Data Analysis and Applications (pp 37–47). SpringerGoogle Scholar
  24. 24.
    Ghoualmi L, Draa A, Chikhi S (2016) An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Syst Appl 57:49–61CrossRefGoogle Scholar
  25. 25.
    Gurkan H, Guz U, Yarman BS (2013) A novel biometric authentication approach using electrocardiogram signals. Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, (pp 4259–4262)Google Scholar
  26. 26.
    Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10Google Scholar
  27. 27.
    He S, Soraghan JJ, O'Reilly BF, Xing D (2009) Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans Biomed Eng 56(7):1864–1870CrossRefGoogle Scholar
  28. 28.
    Homepage of B-secure, (https://www.b-secur.com/ecg-next-generation-authentication/). Accessed: 2018-11-17
  29. 29.
    Hong L, Jain A (1998) Integrating faces and fingerprints for personal identification. IEEE Trans Pattern Anal Mach Intell 20(12):1295–1307CrossRefGoogle Scholar
  30. 30.
    Iannerelli, Ear Identification, Forensic Identification Series, Paramount Publishing Company, Fremount, CA, 1989Google Scholar
  31. 31.
    Islam MS, Alajlan N (2017) Biometric template extraction from a heartbeat signal captured from fingers. Multimed Tools Appl 76(10):12709–12733CrossRefGoogle Scholar
  32. 32.
    Israel SA, Scruggs WT, Worek WJ, Irvine JM (2003) Fusing face and ECG for personal identification. In Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, 226–231. Washington, DC, October 15–17Google Scholar
  33. 33.
    Jain AK, Flynn P, Ross AA (2007) Handbook of biometrics. Springer Science \& Business MediaGoogle Scholar
  34. 34.
    Louis W, Hatzinakos D, Venetsanopoulos A (2014) One dimensional multi-resolution local binary patterns features (1DMRLBP) for regular electrocardiogram (ECG) waveform detection. Digital Signal Processing (DSP), 2014 19th International Conference on, (pp 601–606)Google Scholar
  35. 35.
    Lumini A, Nanni L (2007) When fingerprints are combined with Iris-a case study: FVC2004 and CASIA. IJ Netw Secur 4(1):27–34Google Scholar
  36. 36.
    Marciniak T, Dąbrowski A, Chmielewska A, Krzykowska AA (2014) Selection of parameters in iris recognition system. Multimed Tools Appl 68(1):193–208CrossRefGoogle Scholar
  37. 37.
    Masek L, others (2003) Recognition of human iris patterns for biometric identificationGoogle Scholar
  38. 38.
    Monwar MM, Gavrilova M (2013) Markov chain model for multimodal biometric rank fusion. SIViP 7(1):137–149CrossRefGoogle Scholar
  39. 39.
    Nemirko AP, Lugovaya TS (2005) Biometric human identification based on electrocardiogram. Proceedings of the XIIIth Russian Conference on Mathematical Methods of Pattern Recognition, Moscow, Russian, (pp 20–26)Google Scholar
  40. 40.
    Ojala T, Pietikäinen M (1999) Unsupervised texture segmentation using feature distributions. Pattern Recogn 32(3):477–486CrossRefGoogle Scholar
  41. 41.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59CrossRefGoogle Scholar
  42. 42.
    Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 3:230–236CrossRefGoogle Scholar
  43. 43.
    Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns (Vol 40). Springer Science \& Business MediaGoogle Scholar
  44. 44.
    Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns (Vol 40). Springer Science & Business MediaGoogle Scholar
  45. 45.
    Raol JR (2015) Data fusion mathematics: theory and practice. CRC PressGoogle Scholar
  46. 46.
    Ritter N, Owens R, Cooper J, Van Saarloos PP (1999) Location of the pupil-iris border in slit-lamp images of the cornea. Image Analysis and Processing, 1999. Proceedings. International Conference on, (pp 740–745)Google Scholar
  47. 47.
    Ross AA, Govindarajan R (2005) Feature level fusion of hand and face biometrics. Biom Technol Hum Identif II 5779:196–205Google Scholar
  48. 48.
    Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recogn Lett 24(13):2115–2125CrossRefGoogle Scholar
  49. 49.
    Shin D, Shin D, Shin D (2017) Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimed Tools Appl 76(9):11449–11470CrossRefGoogle Scholar
  50. 50.
    Tahmasebi A, Pourghassem H (2017) Robust intra-class distance-based approach for multimodal biometric game theory-based rank-level fusion of ear, palmprint and signature. Iran J Sci Technol Trans Electr Eng 41(1):51–64CrossRefGoogle Scholar
  51. 51.
    The MIT-BIH ECG-ID database (October 2013), http://www.physionet.org/physiobank/database/ecgiddb/
  52. 52.
    The University of Science and technology in Beijing Database. http://www1.ustb.edu.cn/resb/en/news/news3.htm
  53. 53.
    Vezzetti E, Marcolin F (2012) Geometrical descriptors for human face morphological analysis and recognition. Robot Auton Syst 60(6):928–939CrossRefGoogle Scholar
  54. 54.
    Webbeler G, Stavridis M, Kreiseler D, Bousseljot R-D, Elster C (2007) Verification of humans using the electrocardiogram. Pattern Recogn Lett 28(10):1172–1175CrossRefGoogle Scholar
  55. 55.
    Wildes RP, Asmuth JC, Green GL, Hsu SC, Kolczynski RJ, Matey JR et al (1994) A system for automated iris recognition. Applications of Computer Vision, 1994. Proceedings of the Second IEEE Workshop on, (pp 121–128)Google Scholar
  56. 56.
    Yan P, Bowyer KW (2005) Ear biometrics using 2D and 3D images. In Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on (pp 121–121). IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Ferhat Abbas Setif 1SetifAlgeria
  2. 2.Computer Science DepartmentUniversity of M’silaBPM’silaAlgeria
  3. 3.Manchester Metropolitan UniversityManchesterUK

Personalised recommendations