Enhancement method for edge texture details of the filmic and visual three-dimensional animation

  • Hao Su
  • Weina FuEmail author


Enhancement method for edge texture details of the filmic and visual three-dimensional animation has the vital significance to the dynamic analysis and evaluation of the following images. The traditional enhancement method for edge texture detail mainly uses fuzzy contrast to improve the quality of animation. The contrast and clarity are poor. In order to reduce the noise, this paper proposes the enhancement method of filmic and visual three-dimensional animation edge texture detail based on statistical shape priors. Firstly, this method carries out the segmentation, de-noising, edge detection processing on animation, then uses statistical shape prior method to enhance the edge texture detail. Experimental results show that the proposed method can obtain more ideal edge detail information.


Filmic and visual three-dimensional animation Edge texture detail Detail enhancement method Statistical shape priors 



This research is supported by following grants: Natural Science Foundation of Inner Mongolia [No. 2018MS6010]; Foundation Science Research Start-up Fund of Inner Mongolia Agriculture University. [JC2016005]; Scientific Research Foundation for Doctors of Inner Mongolia Agriculture University. [NDYB2016-11].


  1. 1.
    Abdel-Basset M, Fakhry AE, El-henawy I, Qiu T, Sangaiah AK (2017) Feature and intensity based medical image registration using particle swarm optimization. J Med Syst 41(12):197. CrossRefGoogle Scholar
  2. 2.
    Amitrano D, Belfiore V, Cecinati F et al (2016) Urban areas enhancement in multitemporal SAR RGB images using adaptive coherence window and texture information[J]. IEEE J-STARS 9(8):3740–3752Google Scholar
  3. 3.
    Chang YJ, Ho YS (2016) Disparity map enhancement in pixel based stereo matching method using distance transform[J]. J Vis Commun Image Represent 40(5):118–127CrossRefGoogle Scholar
  4. 4.
    Chichun P et al (2018) Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J Comput Sci-Neth 28:1–10MathSciNetCrossRefGoogle Scholar
  5. 5.
    Couture RA, Dymek RF (2015) A reexamination of absorption and enhancement effects in X-ray fluorescence trace element analysis[J]. Am Mineral 81(5–6):639–650Google Scholar
  6. 6.
    Dixit T, Palani IA, Singh V (2016) Selective tuning of enhancement in near band edge emission in hydrothermally grown ZnO nanorods coated with gold[J]. J Lumin 170(7):180–186CrossRefGoogle Scholar
  7. 7.
    Guerra M, Jozsef G (2016) SU-F-T-93: breast surface dose enhancement using a clinical prone breast board[J]. Med Phys 43(6):3483–3483CrossRefGoogle Scholar
  8. 8.
    Harris JR, Jensen KL, Shiffler DA (2016) Edge enhancement control in linear arrays of ungated field emitters[J]. J Appl Phys 119(4):043301CrossRefGoogle Scholar
  9. 9.
    Ip AH, Kiani A, Kramer IJ et al (2015) Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression[J]. ACS Nano 9(9):8833–8842CrossRefGoogle Scholar
  10. 10.
    Lin Y, Zhu X, Zheng Z et al (2017) The individual identification method of wireless device based on dimensionality reduction and machine learning. J Supercomput 5:1–18. CrossRefGoogle Scholar
  11. 11.
    Liu S, Zhang Z, Qi L et al (2016) A fractal image encoding method based on statistical loss used in agricultural image compression. Multimed Tools Appl 75(23):15525–15536CrossRefGoogle Scholar
  12. 12.
    Liu S, Pan Z, Cheng X (2017) A novel fast fractal image compression method based on distance clustering in high dimensional sphere surface. Fractals 25(4):1740004CrossRefGoogle Scholar
  13. 13.
    Liu S, Lu M, Liu G (2017) A novel distance metric: generalized relative entropy. Entropy 19(6):269CrossRefGoogle Scholar
  14. 14.
    Liu S, Bai W, Liu G et al (2018) Parallel fractal compression method for big video data. Complexity 2018:2016976. CrossRefGoogle Scholar
  15. 15.
    Mengye L, Shuai L (2018) Nucleosome positioning based on generalized relative entropy. Soft Computing. Accepted.
  16. 16.
    Peng H, Li B, Ling H et al (2017) Salient object detection via structured matrix decomposition[J]. IEEE Trans Pattern Anal Mach Intell 39(4):818–832CrossRefGoogle Scholar
  17. 17.
    Shuai L, Weina F, Liqiang H et al (2017) Distribution of primary additional errors in fractal encoding method. Multimed Tools Appl 76(4):5787–5802CrossRefGoogle Scholar
  18. 18.
    Sun Y, Yang W, Zeng X et al (2016) Edge enhancement of potential field data using spectral moments[J]. Geophysics 81(1):G1–G11CrossRefGoogle Scholar
  19. 19.
    Trabelsi RB, Masmoudi AD, Masmoudi DS (2016) Hand vein recognition system with circular difference and statistical directional patterns based on an artificial neural network[J]. Multimed Tools Appl 75(2):687–707CrossRefGoogle Scholar
  20. 20.
    Wang K (2016) Directional and omnidirectional edge enhancement based on radial Hilbert transform of Gabor filter[J]. Electron Lett 52(9):701–703CrossRefGoogle Scholar
  21. 21.
    Zhang B, Chen Z, Sun H et al (2016) Vectorial optical vortex filtering for edge enhancement[J]. J Opt 18(3):035703CrossRefGoogle Scholar
  22. 22.
    Zheng P, Shuai L, Arun S, Khan M (2018) Visual attention feature (VAF) : a novel strategy for visual tracking based on cloud platform in intelligent surveillance systems. J Parallel Distr Com 120:182–194CrossRefGoogle Scholar
  23. 23.
    Zhou K, Zhou L, Liu T, et al (2016) Based on the improved canny operator real-time video edge detection system on FPGA [J]. The design and implementation of computer measurement and control 24(1):219–222Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Changzhou Textile Garment InstituteChangzhouChina
  2. 2.College of Computer and Information EngineeringInner Mongolia Agricultural UniversityHohhotChina

Personalised recommendations