Advertisement

Dynamic network slicing management of multimedia scenarios for future remote healthcare

  • Alberto Huertas CeldránEmail author
  • Manuel Gil Pérez
  • Félix J. García Clemente
  • Fabrizio Ippoliti
  • Gregorio Martínez Pérez
Article
  • 121 Downloads

Abstract

ICT solutions must meet the requirements demanded by challenging and complex scenarios such as remote care, which can be viewed as a combination of heterogeneous services using multimedia and home-care tools. Network Slicing emerged to this end, a paradigm tailoring the needs of any scenario whose specifications need to be met at all times. For its implementation, the network flexibility and resource control features provided by the Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) techniques can allow the Network Slicing paradigm to manage the peculiarities established by any given scenario, taking a special consideration to multimedia scenarios with particular needs such as low latency and high bandwidth. However, existing Network Slicing approaches lack management mechanisms to understand when resources and services have to be changed or reconfigured to continue meeting the requirements, what elements would be involved in this updating process, and how changes would have to be performed. This article addresses this challenge by proposing an architecture able to manage the complete life cycle of Network Slices and to determine when, what, and how to dynamically orchestrate the resources and services so as to meet the scenario requirements. This SDN/NFV-enabled architecture allows managing the underlying infrastructure at run-time through policies, which use a formal Network Slicing information model based on ontologies also proposed in this article. Also, a complete use case is exercised to face the specific requirements of a given eHealth scenario with multimedia services, whose feasibility is demonstrated through a number of conducted experiments.

Keywords

Network slicing SDN/NFV techniques Dynamic network management Multimedia services 

Notes

Acknowledgments

This work has been supported by a Séneca Foundation grant within the Human Resources Researching Postdoctoral Program 2018; by the Irish Research Council, under the government of Ireland post-doc fellowship (grant GOIPD/2018/466); and by a post-doctoral INCIBE grants within the “Ayudas para la Excelencia de los Equipos de Investigación Avanzada en Ciberseguridad” Program, with code INCIBEI-2015-27352.

References

  1. 1.
    Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H (2018) Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutorials 20(3):2429–2453CrossRefGoogle Scholar
  2. 2.
    Asorey Cacheda R, Castro García D, Cuevas A, González Castaño FJ, Herrero Sánchez J, Koltsidas G, Mancuso V, Moreno Novella JI, Oh S, Pantò A (2007) QoS requirements for multimedia services. In: Resource Management in Satellite Networks, Springer, pp 67–94Google Scholar
  3. 3.
    Da Silva I, Mildh G, Kaloxylos A, Spapis P, Buracchini E, Trogolo A, Zimmermann G, Bayer N (2016) Impact of network slicing on 5G radio access networks. In: 2016 European Conference on Networks and Communications, pp 153–157Google Scholar
  4. 4.
    De Turck F, Boutaba R, Chemouil P, Bi J, Westphal C (2015) Guest editors’ introduction: Special Issue on efficient management of SDN/NFV-based systems. IEEE Trans Netw Serv Manag 12(2):114–116CrossRefGoogle Scholar
  5. 5.
    Distributed Management Task Force Inc (2018) The CIM standard: Common Information Model. [retrieved: Jan. 2019]. https://www.dmtf.org/standards/cim/
  6. 6.
    ETSI (2015) Network Functions Virtualisation (NFV); Infrastructure Overview. ETSI GS NFV-INF 001 V1. 1:1Google Scholar
  7. 7.
    Ferrus R, Sallent O, Perez-Romero J, Agusti R (2018) On 5G radio access network slicing: Radio interface protocol features and configuration. IEEE Commun Mag 56(5):184–192CrossRefGoogle Scholar
  8. 8.
    Foukas X, Patounas G, Elmokashfi A, Marina M K (2017) Network slicing in 5G: Survey and challenges. IEEE Commun Mag 55(5):94–100CrossRefGoogle Scholar
  9. 9.
    Gavras A, Denazis S, Tranoris C, Hrasnica H, Barros Weiss M (2017) Requirements and design of 5G experimental environments for vertical industry innovations. In: 2017 Global Wireless Summit, pp 165–169Google Scholar
  10. 10.
    Gutz S, Story A, Schlesinger C, Foster N (2012) Splendid isolation: A slice abstraction for software-defined networks. In: 1st Workshop on Hot Topics in Software Defined Networks, pp 79–84Google Scholar
  11. 11.
    H2020 Euro-5G Project (2017) Deliverable 2.6: Final report on programme progress and KPIs. [retrieved: Jan. 2019]. https://5g-ppp.eu/wp-content/uploads/2017/10/Euro-5G-D2.6_Final-report-on-programme-progress-and-KPIs.pdf
  12. 12.
    H2020 SELFNET Project (Unknown Month 2015) SELFNET - Framework for Self-Organized Network Management in Virtualized and Software Defined Networks. [retrieved: Jan. 2019]. https://selfnet-5g.eu/
  13. 13.
    H2020 SELFNET Project (2016) Deliverable 2.4: Portable testbed to execute virtualized NFV-based and SDN-based scenarios. [retrieved: Jan. 2019].  https://doi.org/10.18153/SLF-671672-D2_4
  14. 14.
    H2020 SoftFIRE Project (2017) Deliverable 3.1: KPIs for evaluating and assessing the features of the testbed. [retrieved: Jan. 2019]. https://www.softfire.eu/wp-content/uploads/SoftFIRE-D3.1-KPIs-Testbed-evaluation-v3.1.pdf
  15. 15.
    Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: A semantic web rule language combining OWL and RuleML, W3C Submission. [retrieved: Jan. 2019]. https://www.w3.org/Submission/SWRL/
  16. 16.
    (https://5g-ppp.eu/kpis/) Key Performance Indicators (KPIs). [retrieved: Jan. 2019]
  17. 17.
    Huertas Celdrán A, Gil Pérez M, García Clemente F J, Martínez Pérez G (2017) Preserving patients’ privacy in health scenarios through a multicontext-aware system. Ann Telecommun 72(9-10):577–587CrossRefGoogle Scholar
  18. 18.
    Huertas Celdrán A, Gil Pérez M, García Clemente FJ, Ippoliti F, Martínez Pérez G (2018) Policy-based network slicing management for future mobile communications. In: 5th IEEE International Conference on Software Defined Systems, pp 153–159Google Scholar
  19. 19.
    Huertas Celdrán A, Gil Pérez M, García Clemente FJ, Martínez Pérez G (2018) Policy-based management for green mobile networks through software-defined networking. Mobile Networks and Applications, In Press.  https://doi.org/10.1007/s11036-016-0783-8
  20. 20.
    Jiang M, Condoluci M, Mahmoodi T (2016) Network slicing management & prioritization in 5G mobile systems. In: 22th European wireless conference on european wireless, vol 2016, pp 1–6Google Scholar
  21. 21.
    Li Z, O’Brien L, Zhang H, Cai R (2012) On a catalogue of metrics for evaluating commercial cloud services. In: ACM/IEEE 13th International Conference on Grid Computing, pp 164–173Google Scholar
  22. 22.
    Li X, Samaka M, Chan H A, Bhamare D, Gupta L, Guo C, Jain R (2017) Network slicing for 5G: Challenges and opportunities. IEEE Internet Comput 21(5):20–27CrossRefGoogle Scholar
  23. 23.
    Makhijani K, Qin J, Ravindran R, Geng L, Qiang L, Peng S, de Foy X, Rahman A, Galis A (2017) Network slicing use cases: Network customization and differentiated services, IETF Internet-Draft draft-netslices-usecases-02Google Scholar
  24. 24.
    Michalopoulos DS, Doll M, Sciancalepore V, Bega D, Schneider P, Rost P (2017) Network slicing via function decomposition and flexible network design. In: 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications, pp 1–6Google Scholar
  25. 25.
    Modi KJ, Kapadia N (2019) Securing healthcare information over cloud using hybrid approach. In: Progress in advanced computing and intelligent engineering, pp 63–74Google Scholar
  26. 26.
    Motik B, Patel-Schneider PF, Parsia B (eds.) (2012) OWL 2 web ontology language: Structural specification and functional-style syntax, 2nd edn. https://www.w3.org/TR/owl2-syntax/
  27. 27.
    NGMN Alliance (2016) Description of network slicing concept, NGMN 5G P1 Deliverable. [retrieved: Jan. 2019]. https://www.ngmn.org/fileadmin/user_upload/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf
  28. 28.
    OASIS (2017) Topology and orchestration specification for cloud applications (TOSCA). [retrieved: Jan. 2019]. https://www.oasis-open.org/committees/tosca/
  29. 29.
    Open Baton Project (2017) A ETSI NFV compliant MANO framework. [retrieved: Jan. 2019]. https://openbaton.github.io/
  30. 30.
    Open Networking Foundation (2016) TR-526 applying SDN architecture to 5G slicing. [retrieved: Jan. 2019]. https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
  31. 31.
    OpenDaylight Project (2016) An open source SDN platform. [retrieved: Jan. 2019]. https://www.opendaylight.org/
  32. 32.
    OpenStack Project (2016) Open source software for creating private and public clouds. [retrieved: Jan. 2019] https://www.openstack.org/
  33. 33.
    Ordonez-Lucena J, Ameigeiras P, Lopez D, Ramos-Muñoz J J, Lorca J, Folgueira J (2017) Network slicing for 5G with SDN/NFV: Concepts, architectures and challenges. IEEE Commun Mag 55(5):80–87CrossRefGoogle Scholar
  34. 34.
    Qiang L, Martinez-Julia P, Geng L, Dong J, Makhijan K, Galis A, Hares S, Kuklinski S (2017) Gap analysis for transport network slicing, IETF Internet-Draft draft-qiang-netslices-gap-analysis-01Google Scholar
  35. 35.
    Ravindran R, Chakraborti A, Amin SO, Azgin A, Wang G (2017) 5G-ICN: Delivering ICN services over 5G using network slicing. IEEE Commun Mag 55(5):101–107CrossRefGoogle Scholar
  36. 36.
    Raza MT, Lu S (2017) Enabling low latency and high reliability for IMS-NFV. In: 13th international conference on network and service management, pp 1–9Google Scholar
  37. 37.
    Richart M, Baliosian J, Serrati J, Gorricho JL, Agüero R, Agoulmine N (2017) Resource allocation for network slicing in WiFi access points. In: 2017 13th international conference on network and service management, pp 1–4Google Scholar
  38. 38.
    Riegel M (2017) Key concepts of network instantiation, IEEE 802.1 OmniRAN Task Group. [retrieved: Jan. 2019]. https://mentor.ieee.org/omniran/dcn/16/omniran-16-0071-01-CF00-key-concepts-of-an-instantiation.pptx
  39. 39.
    Rost P, Mannweiler C, Michalopoulos D S, Sartori C, Sciancalepore V, Sastry N, Holland O, Tayade S, Han B, Bega D, Aziz D, Bakker H (2017) Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Commun Mag 55(5):72–79CrossRefGoogle Scholar
  40. 40.
    Schneider P, Mannweiler C, Kerboeuf S (2018) Providing strong 5G mobile network slice isolation for highly sensitive third-party services. In: IEEE wireless communications and networking conference, pp 1–6Google Scholar
  41. 41.
    Sherwood R, Chan M, Covington A, Gibb G, Flajslik M, Handigol N, Huang T, Kazemian P, Kobayashi M, Naous J, Seetharaman S, Underhill D, Yabe T, Yap K, Yiakoumis Y, Zeng H, Appenzeller G, Johari R, McKeown N, Parulkar G (2010) Carving research slices out of your production networks with OpenFlow. SIGCOMM Comput Commun Rev 40(1):129–130CrossRefGoogle Scholar
  42. 42.
    Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, Katz Y (2007) Pellet: A practical OWL-DL reasoner. Web Semant Sci Serv Agents World Wide Web 5(2):51–53CrossRefGoogle Scholar
  43. 43.
    Solozabal R, Sanchoyerto A, Cava M, Blanco B, Khalife H, Bouet M, Lavaux D, Kafetzakis E (2018) Providing mission-critical services over 5G Radio Access Network. In: 14th IFIP WG 12.5 international conference on artificial intelligence applications and innovations, pp 520–530Google Scholar
  44. 44.
    Soon-Shiong P, Kupwade-Patil H, Seshadri R, Witchey N J (2018) Homomorphic encryption in a healthcare network environment, system and methods. US Patent App 15(/727):494Google Scholar
  45. 45.
    Srivats P (2018) Ostinato packet generator. [retrieved: Jan. 2019]. https://ostinato.org/
  46. 46.
    (2016) Protégé: A free, open source ontology editor and knowledge-base framework. [retrieved: Jan. 2019]. https://protege.stanford.edu/
  47. 47.
    Taleb T, Mada B, Corici M I, Nakao A, Flinck H (2017) PERMIT: Network slicing for personalized 5G mobile telecommunications. IEEE Commun Mag 55(5):88–93CrossRefGoogle Scholar
  48. 48.
    University of Murcia (2018) Complete definition of the Network Slicing ontologies. [retrieved: Jan. 2019]. http://selfnet.inf.um.es/nsontology/
  49. 49.
    W3C Recommendation (2013) SPARQL 1.1 query language for RDF. [retrieved: Jan. 2019]. https://www.w3.org/TR/rdf-sparql-query/
  50. 50.
    Zhang H, Liu N, Chu X, Long K, Aghvami A H, Leung V C M (2017) Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Commun Mag 55(8):138–145CrossRefGoogle Scholar
  51. 51.
    Zhou X, Li R, Chen T, Zhang H (2016) Network slicing as a service: Enabling enterprises’ own software-defined cellular networks. IEEE Commun Mag 54 (7):146–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Telecommunications Software, Systems GroupWaterford Institute of TechnologyWaterfordIreland
  2. 2.Departamento de Ingeniería de la Información y las ComunicacionesUniversity of MurciaMurciaSpain
  3. 3.Departamento de Ingeniería y Tecnología de ComputadoresUniversity of MurciaMurciaSpain
  4. 4.Computer Science Division, School of Science and TechnologyUniversity of CamerinoCamerinoItaly

Personalised recommendations