Multimedia Tools and Applications

, Volume 78, Issue 15, pp 20655–20678 | Cite as

Copy-move forgery detection based on multifractals

  • Aleksandra PavlovićEmail author
  • Natasa Glišović
  • Ana Gavrovska
  • Irini Reljin


Digital images and video are the basic media for communication nowadays. They are used as authenticated proofs or corroboratory evidence in different areas like: forensic studies, law enforcement, journalism and others. With development of software for editing digital images, it has become very easy to change image content, add or remove important information or even to make one image combining multiple images. Thus, the development of methods for such change detection has become very important. One of the most common methods is copy-move forgery detection (CMFD). Methods of this type include change detection that occur by copying a part of an image and pasting it to another location within the image. We propose new method for detection of such changes using certain multifractal parameters as characteristic features, as well as common statistical parameters. Before the analysis, images are divided into non-overlapping blocks of fixed dimensions. For each block, the characteristic features are calculated. In order to classify observed blocks, we used metaheuristic method and proposed new semi-metric function for similarity analysis between blocks. Simulation shows that the proposed method provides good results in terms of precision and recall, with low computational complexity.


Image forensics CMFD (copy-move forgery detection) Multifractal spectrum Hölder exponent Metaheuristic method Semi-metric 



This work has been supported by the Serbian Ministry of Science, Grant nos. III044006, III44009 and TR32023.


  1. 1.
    Alahmadi A, Hussain M, Aboalsamh H, Muhammad G, Bebis G, Mathkour H (2017) Passive detection of image forgery using DCT and local binary pattern. SIViP 11(1):81–88. CrossRefGoogle Scholar
  2. 2.
    Alkawaz MH, Sulong G, Saba T, Rehman A (2016) Detection of copy-move image forgery based on discrete cosine transform. Neural Comput & Applic:1–10.
  3. 3.
    Bi X, Pun CM (2018) Fast copy-move forgery detection using local bidirectional coherency error refinement. Pattern Recogn 81:161–175. CrossRefGoogle Scholar
  4. 4.
    Bi X, Pun CM, Yuan XC (2016) Multi-level dense descriptor and hierarchical feature matching for copy–move forgery detection. Inf Sci 345:226–242. CrossRefGoogle Scholar
  5. 5.
    Bi X, Pun CM, Yuan XC (2018) Multi-scale feature extraction and adaptive matching for copy-move forgery detection. Multimed Tools Appl 77(1):363–385. CrossRefGoogle Scholar
  6. 6.
    Chou CL, Lee JC (2017) Copy-Move Forgery Detection Based on Local Gabor Wavelets Patterns. In: International Conference on Security with Intelligent Computing and Big-data Services (pp. 47-56).
  7. 7.
    CoMoFoD database, available at: Accessed March 2018
  8. 8.
    Emam M, Han Q, Niu X (2016) PCET based copy-move forgery detection in images under geometric transforms. Multimed Tools Appl 75(18):11513–11527. CrossRefGoogle Scholar
  9. 9.
    Gan Y, Chung J, Young J, Hu Z, Zhao J (2018) A Duplicated Forgery Detection Fusion Algorithm using SIFT and Radial-Harmonic Fourier Moments. International Journal of Performability Engineering 14(1):111. Google Scholar
  10. 10.
    Gan Y, Zhong J (2016) Application of AFMT method for composite forgery detection. Nonlinear Dynamics 84(1):341–353. CrossRefGoogle Scholar
  11. 11.
    Glisovic N, Davidovic T, Bojovic N, Kenzevic N Statistical and Mathematical Methods for Solving the Problem of Clustering of Station Data When Data Is Incomplete, Conference: XXXV Symposium on New Technologies in Postal and Telecommunication Vehicles, PosTel 2017. Traffic Faculty, BelgradeGoogle Scholar
  12. 12.
    Glisovic N, Davidovic T, Raskovic M (2017) Clustering when missing data by using the variable neighborhood search, (in serbian). In: Proc. SYM-OP-IS 2017, pages 158-163, ZlatiborGoogle Scholar
  13. 13.
    Gong J, Guo J (2016) Image copy-move forgery detection using SURF in opponent color space. Transactions of Tianjin University 22(2):151–157. CrossRefGoogle Scholar
  14. 14.
    Guo Y, Cao X, Zhang W, Wang R (2018) Fake Colorized Image Detection. IEEE Transactions on Information Forensics and Security 13(8):1932–1944. CrossRefGoogle Scholar
  15. 15.
    Hayat K, Qazi T (2017) Forgery detection in digital images via discrete wavelet and discrete cosine transforms. Comput Electr Eng 62:448–458. CrossRefGoogle Scholar
  16. 16.
    Image Manipulation Dataset, available at: Accessed April 2018
  17. 17.
    Jenadeleh M, Ebrahimi Moghaddam M (2016) Blind detection of region duplication forgery using fractal coding and feature matching. J Forensic Sci 61(3):623–636. CrossRefGoogle Scholar
  18. 18.
    Kaushik R, Bajaj RK, Mathew J (2015) On image forgery detection using two dimensional discrete cosine transform and statistical moments. Procedia Computer Science 70:130–136. CrossRefGoogle Scholar
  19. 19.
    Lee JC, Chang CP, Chen WK (2015) Detection of copy–move image forgery using histogram of orientated gradients. Inf Sci 321:250–262. CrossRefGoogle Scholar
  20. 20.
    Lin CS, Tsay JJ (2016) Passive forgery detection using discrete cosine transform coefficient analysis in JPEG compressed images. Journal of Electronic Imaging 25(3):033010. CrossRefGoogle Scholar
  21. 21.
    Mahmood T, Mehmood Z, Shah M, Saba T (2018) A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J Vis Commun Image Represent 53:202–214. CrossRefGoogle Scholar
  22. 22.
    Malviya AV, Ladhake SA (2016) Pixel based image forensic technique for copy-move forgery detection using auto color correlogram. Procedia Computer Science 79:383–390. CrossRefGoogle Scholar
  23. 23.
    Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mladenović N, Sörensen K, Souza M (eds) (2018) Special issue on “Advances in Variable Neighborhood Search”. Int Trans Oper Res 25(1):427–427Google Scholar
  25. 25.
    Mohsen J, Mohsen E-M (2016) Blind Detection of Region Duplication Forgery Using Fractal Coding and Feature Matching. J Forensic Sci 61(3).
  26. 26.
    Oommen RS, Jayamohan M, Sruthy S (2016) Using Fractal Dimension and Singular Values for Image Forgery Detection and Localization. Procedia Technology 24:1452–1459. CrossRefGoogle Scholar
  27. 27.
    Reljin I, Reljin B, Pavlovic I, Rakočevic I (2000). Multifractal analysis of gray-scale images. In: Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean (Vol. 2, pp. 490-493). IEEEGoogle Scholar
  28. 28.
    Shih FY, Jackson JK (2015) Copy-Cover Image Forgery Detection in Parallel Processing. Int J Pattern Recognit Artif Intell 29(08):1554004. MathSciNetCrossRefGoogle Scholar
  29. 29.
    Soni B, Das PK, Thounaojam DM (2018) Dual System for Copy-move Forgery Detection using Block-based LBP-HF and FWHT Features. Eng Lett 26(1).
  30. 30.
    Ustubioglu B, Ulutas G, Ulutas M, Nabiyev VV (2016) A new copy move forgery detection technique with automatic threshold determination. AEU-International Journal of Electronics and Communications 70(8):1076–1087. CrossRefGoogle Scholar
  31. 31.
    Wang XY, Liu YN, Xu H, Wang P, Yang HY (2018) Robust copy–move forgery detection using quaternion exponent moments. Pattern Anal Applic 21(2):451–467. MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yan Y, Ren W, Cao X (2019) Recolored Image Detection via a Deep Discriminative Model. IEEE Transactions on Information Forensics and Security 14(1):5–17. CrossRefGoogle Scholar
  33. 33.
    Yang B, Sun X, Guo H, Xia Z, Chen X (2018) A copy-move forgery detection method based on CMFD-SIFT. Multimed Tools Appl 77(1):837–855. CrossRefGoogle Scholar
  34. 34.
    Zhang W, Cao X, Qu Y, Hou Y, Zhao H, Zhang C (2010) Detecting and extracting the photo composites using planar homography and graph cut. IEEE Transactions On Information Forensics And Security 5(3):544–555. CrossRefGoogle Scholar
  35. 35.
    Zhao F, Shi W, Qin B, Liang B (2017) Image forgery detection using segmentation and swarm intelligent algorithm. Wuhan University Journal of Natural Sciences 22(2):141–148. MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhong J, Gan Y (2016) Detection of copy–move forgery using discrete analytical Fourier–Mellin transform. Nonlinear Dynamics 84(1):189–202. MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhong J, Gan Y, Young J, Huang L, Lin P (2017) A new block-based method for copy move forgery detection under image geometric transforms. Multimed Tools Appl 76(13):14887–14903. CrossRefGoogle Scholar
  38. 38.
    Zhong J, Gan Y, Young J, Lin P (2017) Copy Move Forgery Image Detection via Discrete Radon and Polar Complex Exponential Transform-Based Moment Invariant Features. Int J Pattern Recognit Artif Intell 31(02):1754005. CrossRefGoogle Scholar
  39. 39.
    Zhou Z, Wang Y, Wu QJ, Yang CN, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Transactions on Information Forensics and Security 12(1):48–63. CrossRefGoogle Scholar
  40. 40.
    Zhu Y, Shen X, Chen H (2016) Copy-move forgery detection based on scaled ORB. Multimed Tools Appl 75(6):3221–3233. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Telecommunications Department, School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Technical SciencesState University of Novi PazarNovi PazarSerbia

Personalised recommendations