Cognitive psychological analysis based on multilayer semantics of web video and feature extraction of psychological images

  • Xin-di GuoEmail author


In order to improve the accuracy of psychological analysis by extracting network video and image features, it is difficult to analyze video semantics and blur the boundaries of psychological images. In order to solve the above problems, this paper proposes a cognitive psychological analysis algorithm based on multi-layer semantics and feature extraction of psychological images in network video. Firstly, this algorithm proposes a hierarchical semantic description of network video. It can be divided into two stages: network video layering and semantic template based on layering. Then, the algorithm divides the mental image into multiple segmentation. Each segmentation focuses on the impact of different network video and different types of image features on data convergence. At the same time, interface blurring processing mechanism and image data semantic hierarchical classification method are designed. Finally, the simulation results show that the proposed algorithm is credible, feasible and effective.


Cognitive psychological analysis Multilayer video semantics Feature extraction Psychological images 



  1. 1.
    Akfirat S, Polat FÇ, Yetim U (2016) How the poor Deal with their own poverty: a social psychological analysis from the social identity perspective[J]. Soc Indic Res 127(1):413–433CrossRefGoogle Scholar
  2. 2.
    Eagly AH (2016) Gender and social influence: a social psychological analysis.[J]. Am Psychol 38(38):971–981Google Scholar
  3. 3.
    Fang X, Han N,Wu J et al (2018) Approximate low-rank projection learning for feature extraction[J]. IEEE T Neur Net Lear 29(11):5228–5241Google Scholar
  4. 4.
    Gorman CA, Robinson J, Gamble JS (2018) An investigation into the validity of asynchronous web-based video employment-interview ratings[J]. Consulting Psychology Journal Practice & Research 70(2):129–146Google Scholar
  5. 5.
    Guo X, Zhang R, Liu X et al (2017) Human mobility semantics analysis: a probabilistic and scalable approach[J]. Geoinformatica 4:1–33Google Scholar
  6. 6.
    Gustafsson M, Isaksson U, Karlsson S et al (2016) Behavioral and psychological symptoms and psychotropic drugs among people with cognitive impairment in nursing homes in 2007 and 2013[J]. Eur J Clin Pharmacol 72(8):987–994CrossRefGoogle Scholar
  7. 7.
    Hou S, Chen L, Tao D et al (2017) Multi-layer multi-view topic model for classifying advertising video[J]. Pattern Recogn 68:66–81CrossRefGoogle Scholar
  8. 8.
    Jayarajah U (2017) Psychological adaptation to alteration of body image among stoma patients: a descriptive study[J]. Indian J Psychol Med 39(1):63–68CrossRefGoogle Scholar
  9. 9.
    Jenke R, Peer A, Buss M (2017) Feature extraction and selection for emotion recognition from EEG[J]. IEEE Trans Affect Comput 5(3):327–339CrossRefGoogle Scholar
  10. 10.
    Jeunet C, N'Kaoua B, Lotte F (2016) Advances in user-training for mental-imagery-based BCI control: psychological and cognitive factors and their neural correlates[J]. Prog Brain Res 228:3CrossRefGoogle Scholar
  11. 11.
    Kim H, Tao M, Byun H et al (2018) Exploiting web images for video highlight detection with triplet deep ranking[J]. IEEE T Multimedia 20(9):2415–2426Google Scholar
  12. 12.
    Liu Y, Yi X, Chen R et al (2018) Feature extraction based on information gain and sequential pattern for English question classification[J]. IET Softw 12(6):520–526CrossRefGoogle Scholar
  13. 13.
    Manzoor T, Rovenskaya E, Davydov A et al (2018) Learning through fictitious play in a game-theoretic model of natural resource consumption[J]. IEEE Control Systems Letters 2(1):163–168CrossRefGoogle Scholar
  14. 14.
    Mathew J, Zollanvari A, James AP (2018) Edge-aware spatial denoising filtering based on a psychological model of stimulus similarity[J]. IEEE Access 6:3433–3447CrossRefGoogle Scholar
  15. 15.
    Mckay D, Kim SK, Mancusi L et al (2018) Profile analysis of psychological symptoms associated with Misophonia: a community sample[J]. Behav Ther 49(2):286–294CrossRefGoogle Scholar
  16. 16.
    Pawar K, Attar V (2018) Deep learning approaches for video-based anomalous activity detection[J]. World Wide Web.
  17. 17.
    Seyedhosseini M, Tasdizen T. (2016) Semantic Image Segmentation with Contextual Hierarchical Models[J]. IEEE T Pattern Anal 38(5):951–964Google Scholar
  18. 18.
    Shishikui Y, Sawahata Y (2018) Effects of viewing ultra-high-resolution images with practical viewing distances on familiar impressions[J]. IEEE Trans Broadcast 64(2):498–507CrossRefGoogle Scholar
  19. 19.
    Stratou G, Morency LP. (2017) MultiSense—Context-Aware Nonverbal Behavior Analysis Framework: A Psychological Distress Use Case[J]. IEEE T Affect Comput 8(2):190–203Google Scholar
  20. 20.
    Wei Z, Rui C, Chen X (2019) Nonlinear reconstruction of multilayer media in scanning microwave microscopy[J]. IEEE Trans Instrum Meas 68(1):197–205CrossRefGoogle Scholar
  21. 21.
    Wolfe SE, Brooks DB (2017) Mortality awareness and water decisions: a social psychological analysis of supply-management, demand-management and soft-path paradigms[J]. Water Int 42:1–17CrossRefGoogle Scholar
  22. 22.
    Ye X, Chen X, Liu D et al (2018) Efficient feature extraction using apache spark for network behavior anomaly detection[J]. Tsinghua Sci Technol 23(5):561–573CrossRefGoogle Scholar
  23. 23.
    Yu L, Xia X, Zhou K et al (2019) Affine invariant fusion feature extraction based on geometry descriptor and BIT for object recognition[J]. IET Image Process 13(1):57–72CrossRefGoogle Scholar
  24. 24.
    Yue G, Hou C, Gu K et al (2018) Biologically inspired blind quality assessment of tone-mapped images[J]. IEEE Trans Ind Electron 65(3):2525–2536CrossRefGoogle Scholar
  25. 25.
    Zhuang Y, Song J, Wu F et al (2018) Multimodal Deep Embedding via Hierarchical Grounded Compositional Semantics[J]. IEEE T Circ Syst Vid 28(1):76–89.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychology, School of Basic Medicine and Forensic PathologyBaotou Medical CollegeBaotouChina

Personalised recommendations