Improvement of viewing experience on stereoscopic image guided by human stereo vision

  • Jiawei Xu
  • Seop Hyeong Park
  • Xiaoqin ZhangEmail author


Recent 3D visual quality assessment methods still have difficulties in providing the best viewing experience from the viewer’s perspective due to the ambiguous understanding of human stereo vision. One of the key reasons is that the disparity gradient, which affects human depth perception, is hard to control for the input stereo image pair. In this paper, we mathematically formulated the human disparity gradient and optimized the disparity gradients for each stereo image pair. Considering that the disparity gradient needs to be limited to a specific range to satisfy the human visual preference and comfortableness, we proposed a new quantitative definition of disparity gradient and trained the optimal disparity gradients were learned from the pilot study to enhance the viewing experience. Extensive subjective evaluations have demonstrated the competitiveness of this proposed method for the improvement of the viewing experience.


Stereo vision Disparity gradient Random dot stereograms (RDS) Stereoscopic image 



The authors are grateful to thank the volunteers to conduct the subjective experiments.


  1. 1.
    Bland J, Altman D (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160CrossRefGoogle Scholar
  2. 2.
    Bulthoff H, Fahle M, Wegmann M (1991) Perceived depth scales with disparity gradient. Perception 20(2):145–153CrossRefGoogle Scholar
  3. 3.
    Cao X, Li Z, Dai Q (2011) Semi-automatic 2D-to-3D conversion using disparity propagation. IEEE Trans Broadcast 57(2):491–499CrossRefGoogle Scholar
  4. 4.
    Chang C, Lin C (2011) LIBSVM. ACM Trans Intell Syst Technol 2(3):1–27CrossRefGoogle Scholar
  5. 5.
    Chen M-J, Cormack LK, Bovik AC (2013) No-reference quality assessment of natural stereopairs. IEEE Trans Image Process 22(9):3379–3391MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen W, Jérôme F, Barkowsky M, Le Callet P (2012) Exploration of quality of experience of stereoscopic images: Binocular depth. In: Proc. Int. Workshop Video Process. Quality Metrics Consum. Electron. Scottsdale, pp. 116–121Google Scholar
  7. 7.
    Chen M-J, Kwon D-K, Bovik AC (2012) Study of subject agreement on stereoscopic video quality. In: Proc. IEEE Southwest Symp. Image Anal. Interpretation, Santa Fe, NM, USA, pp. 173–176Google Scholar
  8. 8.
    Filippini H, Banks M (2009) Limits of stereopsis explained by local cross-correlation. J Vis 9(1):8–8CrossRefGoogle Scholar
  9. 9.
    Howard I (2012) Perceiving in depth, volume 1: basic mechanisms. Oxford University Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Huang W, Cao X, Lu K, Dai Q, Bovik A (2015) Toward naturalistic 2D-to-3D conversion. IEEE Trans Image Process 24(2):724–733MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jung C, Cao L, Liu H, Kim J (2015) Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping. Displays 40:17–23CrossRefGoogle Scholar
  12. 12.
    Kane D, Guan P, Banks M (2014) The Limits of Human Stereopsis in Space and Time. J Neurosci 34(4):1397–1408CrossRefGoogle Scholar
  13. 13.
    Lambooij M (2009) Visual discomfort and visual fatigue of Stereoscopic displays: A review. Journal of Imaging Science and Technology 53(3):030201CrossRefGoogle Scholar
  14. 14.
    Li Z, Cao X, Dai Q (2012) A novel method for 2D-to-3D video conversion using bi-directional motion estimation. Proc IEEE ICASSP:1429–1432Google Scholar
  15. 15.
    McIntire JP, Havig PR, Geiselman EE (2014) Stereoscopic 3D displays and human performance: A comprehensive review. Displays 35(1):18–26CrossRefGoogle Scholar
  16. 16.
    McKee S, Verghese P (2002) Stereo transparency and the disparity gradient limit. Vis Res 42(16):1963–1977CrossRefGoogle Scholar
  17. 17.
    Moorthy AK, Su C-C, Mittal A, Bovik AC (2013) Subjective evaluation of stereoscopic image quality. Signal Process Image Commun 28(8):870–883CrossRefGoogle Scholar
  18. 18.
    Oh H, Kim J, Kim J, Kim T, Lee S, Bovik AC (2017) Enhancement of Visual Comfort and Sense of Presence on Stereoscopic 3D Images. IEEE Trans Image Process 26(8):3789–3801MathSciNetCrossRefGoogle Scholar
  19. 19.
    Saxena A, Sun M, Ng A (2009) Make3D: Learning 3D scene structure from a single still image. IEEE Trans Pattern Anal Mach Intell 31(5):824–840CrossRefGoogle Scholar
  20. 20.
    Seuntiens P, Meesters L, Ijsselsteijn W (2006) Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans Appl Perception 3(2):95–109CrossRefGoogle Scholar
  21. 21.
    Shibata T, Kim J, Hoffman DM, Banks MS (2011) The zone of comfort: Predicting visual discomfort with stereo displays. J Vis 11(8):11–11CrossRefGoogle Scholar
  22. 22.
    Stereo Photo Maker (English) (2017). Software available from Accessed 30 June 2018
  23. 23.
    Tombari F, Mattoccia S, Di Stefano L (2010) Stereo for robots: quantitative evaluation of efficient and low-memory dense stereo algorithms. In: 11th Int. Conf. on Control, Automation, Robotics and Vision (ICARCV 2010), pp. 73–78Google Scholar
  24. 24.
    Trivedi H, Lloyd S (1985) The role of disparity gradient in stereo vision. Perception 14(6):685–690CrossRefGoogle Scholar
  25. 25.
    Tsutsui K, Taira M, Sakata H (2005) Neural mechanisms of three-dimensional vision. Neurosci Res 51(3):221–229CrossRefGoogle Scholar
  26. 26.
    Tyler W (1975) Spatial organization of binocular disparity sensitivity. Vis Res 15(5):583–590CrossRefGoogle Scholar
  27. 27.
    Urvoy M, Barkowsky M, Callet PL (2013) How visual fatigue and discomfort impact 3D-TV quality of experience: A comprehensive review of technological, psychophysical, and psychological factors. Ann Telecommun 68(11–12):641–655CrossRefGoogle Scholar
  28. 28.
    Wang J, Lai S, Li M (2012) Improved Image Fusion Method Based on NSCT and Accelerated NMF. Sensors 12(12):5872–5887CrossRefGoogle Scholar
  29. 29.
    Ware C (2004) Information visualization: Perception for design (interactive technologies). Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  30. 30.
    Zellinger, W, Moser BA, Chouikhi A, Seitner F, Nezveda M, Gelautz M (2016) Linear optimization approach for depth range adaption of stereoscopic videos. Stereoscopic Displays and Applications XXVII, IS&T Electronic ImagingGoogle Scholar
  31. 31.
    Zhang Z, Edwards M, Schor C (2001) Spatial interactions minimize relative disparity between adjacent surfaces. Vis Res 41:2995–3007CrossRefGoogle Scholar
  32. 32.
    Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE Trans Broadcast 51(2):191–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Newcastle UniversityNewcastle-upon-TyneUK
  2. 2.School of SoftwareHallym UniversityChuncheonSouth Korea
  3. 3.Department of Computer ScienceWenzhou UniversityWenzhouChina

Personalised recommendations