Advertisement

Improvement of usability in user interfaces for massive data analysis: an empirical study

  • Carlos Iñiguez-JarrínEmail author
  • José Ignacio Panach
  • Oscar Pastor López
Article
  • 24 Downloads

Abstract

Big Data challenges the conventional way of analyzing massive data and creates the need to improve the usability of existing user interfaces (UIs) in order to deal with massive amounts of data. How the UIs facilitate the search for information and helps in the end-user’s decision-making depends on developers and designers, who have no guides for producing usable UIs. We have proposed a set of interaction patterns for designing massive data analysis UIs by studying 27 real case studies of massive data analysis. We evaluate if the proposed patterns improve the usability of the massive data analysis UIs in the context of literature search. We conducted two replications of the same controlled experiment, one with 24 undergraduate students experienced in scientific literature search and the other with eight researchers who are experienced in biomedical literature search. The experiment, which was planned as a repeated measures design, compares UIs that have been enhanced with the proposed patterns versus original UIs in terms of three response variables: effectiveness, efficiency, and satisfaction. The outcomes show that the use of interaction patterns in UIs for massive data analysis yields better and more significant effects for the three response variables, enhancing the discovery and visualization of the data. The use of the proposed interaction design patterns improves the usability of the UIs that deal with massive data. The patterns can be considered as guides for helping designers and developers to design usable UIs for massive data analysis web applications.

Keywords

User interface Big data Usability Interaction design patterns 

Notes

Acknowledgments

The authors thank the members of the PROS Center Genome group for productive discussions. In addition, it is also important to highlight that the Secretaría Nacional de Educación, Ciencia y Tecnología (SENESCYT) and the Escuela Politécnica Nacional from Ecuador have supported this work. This project has also been developed with the financial support of the Spanish State Research Agency and the Generalitat Valenciana, under the projects TIN2016-80811-P and PROMETEO/2018/176, and co-financed with ERDF.

References

  1. 1.
    Borchers JO (2000) “Interaction Design Patterns : Twelve Theses,” Position Pap. CHI Work. “‘Pattern Lang. INteractoin Des. Build. Momentum,’”Google Scholar
  2. 2.
    Borchers J (2009) The aachen media space: design patterns for augmented work environments, in Designing User Friendly Augmented Work Environments, Springer, 2009, pp. 261–312.Google Scholar
  3. 3.
    Borchers J, Buschmann F (2001) A pattern approach to interaction design. WileyGoogle Scholar
  4. 4.
    Cohen J (1988) Statistical power analysis for the behavioral sciences 2nd edn. Erlbaum Associates, HillsdaleGoogle Scholar
  5. 5.
    Cremonesi P, Elahi M, and Garzotto F (2015) Interaction design patterns in recommender systems, in Proceedings of the Biannual Conference on Italian SIGCHI Chapter, 2015, pp. 66–73,  https://doi.org/10.1145/2808435.2808442.
  6. 6.
    Cremonesi P, Elahi M, Garzotto F (Feb. 2017) User interface patterns in recommendation-empowered content intensive multimedia applications. Multimed Tools Appl 76(4):5275–5309.  https://doi.org/10.1007/s11042-016-3946-5 CrossRefGoogle Scholar
  7. 7.
    Datamer e-book (2016) Top five high-impact use cases for big data analytics. Available at. https://www.datameer.com/pdf/eBook-Top-Five-High-Impact-UseCases-for-Big-Data-Analytics.pdf. Accessed on Apr-22-2017.
  8. 8.
    DigitalScience (2018) “Dimensions.” Available at. https://app.dimensions.ai/discover/publication. Accessed on Mar-03-2018.
  9. 9.
    Douglas SM, Montelione GT, Gerstein M (2005) PubNet: a flexible system for visualizing literature derived networks. Genome Biol 6(9):R80.  https://doi.org/10.1186/gb-2005-6-9-r80 CrossRefGoogle Scholar
  10. 10.
    Elliott AC, Woodward WA (2006) Statistical analysis quick reference guidebook: with SPSS examples. Sage Publications Pvt. Ltd.Google Scholar
  11. 11.
    Ellis PD (2010) The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results. Cambridge University PressGoogle Scholar
  12. 12.
    Field A (2013) Discovering statistics using IBM SPSS statistics, 4th ed. Sage Publications Ltd.Google Scholar
  13. 13.
    Fiorini N et al (2018, Jan.) PubMed labs: an experimental system for improving biomedical literature search. Database, vol 2018.  https://doi.org/10.1093/database/bay094
  14. 14.
    Folmer E (2006) Usability patterns in games. Futur. Play, vol. 6.Google Scholar
  15. 15.
    Fritz MS, Arthur AM (2017) Moderator variables. Oxford University PressGoogle Scholar
  16. 16.
    Genomenon (2018) “Mastermind - Comprehensive Genomic Search Engine.” Available at. https://mastermind.genomenon.com/. Accessed on Apr-22-2018.
  17. 17.
    Good BM, Clarke EL, Loguercio S, Su AI (2012) Linking genes to diseases with a SNPedia-Gene Wiki mashup. J Biomed Semantics 3(1):S6.  https://doi.org/10.1186/2041-1480-3-S1-S6 CrossRefGoogle Scholar
  18. 18.
    Graham I (2003) A pattern language for Web usability. Addison-Wesley.Google Scholar
  19. 19.
    Granlund Å, Lafrenière D, and Carr DA (2001) A pattern-supported approach to the user Interface design processGoogle Scholar
  20. 20.
    Guerra E, Fernandes C (2010) An evaluation process for pattern languages, in Proceedings of the 8th Latin American Conference on Pattern Languages of Programs, 2010, pp. 18:1–18:11,  https://doi.org/10.1145/2581507.2581525.
  21. 21.
    IBM (2015) IBM big data use cases – What is a big data use case and how to get started – Exploration, 2015. Available at. http://www-01.ibm.com/software/data/bigdata/use-cases.html. Accessed on Apr-22-2017.
  22. 22.
    Iñiguez-Jarrín CE, Panach JI, Pastor Ó (2018) Defining interaction design patterns to extract knowledge from big data. Advanced Information Systems Engineering 10816:539–553.  https://doi.org/10.1007/978-3-319-91563-0 CrossRefGoogle Scholar
  23. 23.
    Kuehl RO (2001) Diseño de experimentos: principios estadísticos de diseño y análisis de investigación, 2 ed. MéxicoGoogle Scholar
  24. 24.
    Laskowski N (2015) Ten big data case studies in a Nutshell, SearchCIO.com. pp. 11–12Google Scholar
  25. 25.
    Lewis JR (1995) IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78CrossRefGoogle Scholar
  26. 26.
    Lu Z (2011) PubMed and beyond: A survey of web tools for searching biomedical literature,” Database, vol. 2011, p. baq036, 2011, DOI:  https://doi.org/10.1093/database/baq036.CrossRefGoogle Scholar
  27. 27.
    Marill JL, Miller N, Kitendaugh P (Jan. 2006) The MedlinePlus public user interface: studies of design challenges and opportunities. J Med Libr Assoc 94(1):30–40Google Scholar
  28. 28.
    Martín-Rodilla P, Panach JI (2014) Applications in the context of cultural heritage dataGoogle Scholar
  29. 29.
    Nilsson EG (2009) Design patterns for user interface for mobile applications. Adv Eng Softw 40(12):1318–1328CrossRefGoogle Scholar
  30. 30.
    Pentaho (2015) Big data uses cases | Pentaho. Available at. http://www.pentaho.com/big-data-use-cases. Accessed on Jun-11-2017.
  31. 31.
    Pituch KA, Stevens JP (2015) Applied multivariate statistics for the social sciences: analyses with SAS and IBM’s SPSS. RoutledgeGoogle Scholar
  32. 32.
    Riley RD, Lambert PC, Abo-Zaid G (Feb. 2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340:c221.  https://doi.org/10.1136/BMJ.C221 CrossRefGoogle Scholar
  33. 33.
    Schmettow M (2006) User interaction design patterns for information retrieval, Eur. 2006, pp. 489–512, 2006.Google Scholar
  34. 34.
    Scott B and Neil T (2009) Designing web interfaces: Principles and patterns for rich interactions. O’Reilly Media, Inc.Google Scholar
  35. 35.
    Seffah A, Taleb M (2012) Tracing the evolution of HCI patterns as an interaction design tool. Innov Syst Softw Eng 8(2):93–109.  https://doi.org/10.1007/s11334-011-0178-8 CrossRefGoogle Scholar
  36. 36.
    Seidel N (2017) Empirical evaluation methods for pattern languages: sketches, classification, and network analysis, in Proceedings of the 22Nd European Conference on Pattern Languages of Programs, 2017, pp. 13:1--13:24, DOI: https://doi.org/10.1145/3147704.3147719.
  37. 37.
    Seltman HJ (2012) Experimental design and analysis. Online at: http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
  38. 38.
    Templeton GF (2011) A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf., vol. 28Google Scholar
  39. 39.
    The Hillside Group (1994) How to Hold a Writer’s Workshop, 1994. Available at. https://hillside.net/conferences/plop/235-how-to-hold-a-writers-workshop. Accessed on Dec-18-2018.
  40. 40.
    Thimthong T, Chintakovid T, and Krootjohn S (2012) An empirical study of search box and autocomplete design patterns in online bookstore. SHUSER 2012–2012 IEEE Symp. Humanit. Sci. Eng. Res., pp. 1165–1170,  https://doi.org/10.1109/SHUSER.2012.6268796.
  41. 41.
    Tidwell J (1999) Common ground: a pattern language for human-computer interface design. O’Reilly MediaGoogle Scholar
  42. 42.
    Tidwell J (2010) Designing interfaces: patterns for effective interaction design. O’Reilly Media, Inc.Google Scholar
  43. 43.
    Toxboe A (2018) User interface design pattern library. UI Patterns, 2013. Available at. http://ui-patterns.com. Accessed on Feb-05-2018.
  44. 44.
    Van Duyne DK, Landay JA, Hong JI (2003) The design of sites : patterns, principles, and processes for crafting a customer-centered web experience. Addison-WesleyGoogle Scholar
  45. 45.
    Van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal question metric (gqm) approach. Encycl Softw EngGoogle Scholar
  46. 46.
    Van Welie M (2008) Patterns in interaction design. Available at. http://www.welie.com/patterns/. Accessed on Mar-01-2018.
  47. 47.
    Vegas S, Apa C, Juristo N (2016) Crossover designs in software engineering experiments: benefits and perils. IEEE Trans Softw Eng 42(2):120–135.  https://doi.org/10.1109/TSE.2015.2467378 CrossRefGoogle Scholar
  48. 48.
    VOSviewer (2015) Visualizing scientific landscapes, Centre for Science and Technology Studies, Leiden University, 2015. Available at. http://www.vosviewer.com/.
  49. 49.
    Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering, vol 9783642290. Springer, United StatesCrossRefGoogle Scholar
  50. 50.
    Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI (2016) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44(D1):D313–D316.  https://doi.org/10.1093/nar/gkv1104 CrossRefGoogle Scholar
  51. 51.
    Yahoo (2006) Yahoo design pattern library. Available at. https://developer.yahoo.com/ypatterns/everything.html. Accessed on Apr-03-2017.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Research Center on Software Production Methods (PROS)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador
  3. 3.Escola Tècnica Superior d’EnginyeriaDepartament d’Informàtica, Universitat de ValènciaBurjassotSpain

Personalised recommendations