Single secret image sharing scheme using neural cryptography

  • Mayank GuptaEmail author
  • Manu Gupta
  • Maroti Deshmukh


The goal of the secret sharing is to share a secret information without any leakage to others. In this paper, we proposed a secure mechanism of sharing secret shares of an image between two parties generated via Shamir’s scheme with the help of neural cryptography. Neural cryptography is a new source for public key cryptography schemes which are not based on number theory, and have less computation time and memory complexities. Neural cryptography can be used to generate a common secret key between two parties. Keeping all these in mind, our main focus is to share secret information over a public channel with less computation power. In the case of neural cryptography, both the parties receive an identical input vector, generate an output bit and are trained based on the output bit. The dynamics of the two networks and their weight vectors is found to exhibit a synchronization state with identical weights. These identical weights are acts as a common key between two parties. The proposed scheme is secure and does not reveal secret information.


Secret sharing Neural cryptography Synchronization Boolean XOR Tree parity machine Hebbian learning Encryption Decryption 



  1. 1.
    Al-Ghamdi M, Al-Ghamdi M, Gutub A (2019) Security enhancement of shares generation process for multimedia counting-based secret-sharing technique. Multimed Tools Appl 78(12):16283–16310CrossRefGoogle Scholar
  2. 2.
    Bao L, Yi S, Zhou Y (2017) Combination of sharing matrix and image encryption for lossless (k, n)-secret image sharing. IEEE Trans Image Process 26(12):5618–5631MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boyd C, Mathuria A (2013) Protocols for authentication and key establishment. Springer Science & Business MediaGoogle Scholar
  4. 4.
    Chen CC, Chang CC (2007) Secret image sharing using quadratic residues. In: Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007), vol 1. IEEE, pp 515–518Google Scholar
  5. 5.
    Chen T, Lee YS, Huang WL, Juan JST, Chen YY, Li MJ (2013) Quality-adaptive visual secret sharing by random grids. J Syst Softw 86(5):1267–1274CrossRefGoogle Scholar
  6. 6.
    Demuth HB, Beale MH, De Jess O, Hagan MT (2014) Neural network design. Martin HaganGoogle Scholar
  7. 7.
    Deshmukh M, Nain N, Ahmed M (2016) An (n, n)-multi secret image sharing scheme using boolean XOR and modular arithmetic. In: 2016 IEEE 30th international conference on advanced information networking and applications (AINA). IEEE, pp 690–697Google Scholar
  8. 8.
    Deshmukh M, Nain N, Ahmed M (2016) Enhanced modulo based multi secret image sharing scheme. Springer, Cham, pp 212–224CrossRefGoogle Scholar
  9. 9.
    Deshmukh M, Nain N, Ahmed M (2017) A novel approach for sharing multiple color images by employing Chinese remainder theorem. J Vis Commun Image Represent 49:291–302CrossRefGoogle Scholar
  10. 10.
    Deshmukh M, Nain N, Ahmed M (2018) Efficient and secure multi secret sharing schemes based on boolean XOR and arithmetic modulo. Multimed Tools Appl 77(1):89–107CrossRefGoogle Scholar
  11. 11.
    Deshmukh M, Nain N, Ahmed M (2019) Secret sharing scheme based on binary trees and Boolean operation. Knowl Inf Syst 60(3):1377–1396CrossRefGoogle Scholar
  12. 12.
    Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inform Theory 22(6):644–654MathSciNetCrossRefGoogle Scholar
  13. 13.
    Forouzan BA, Mukhopadhyay D (2011) Cryptography and network security (Sie). McGraw-Hill EducationGoogle Scholar
  14. 14.
    Ghasemi R, Safi A, Hadian Dehkordi M (2018) Efficient multisecret sharing scheme using new proposed computational security model. Int J Commun Syst 31 (1):e3399CrossRefGoogle Scholar
  15. 15.
    Gupta BB (ed) (2018) Computer and cyber security: principles, algorithm, applications, and perspectives. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Gupta B, Agrawal DP, Yamaguchi S (eds) (2016) Handbook of research on modern cryptographic solutions for computer and cyber security. IGI global, PennsylvaniaGoogle Scholar
  17. 17.
    Gutub A, Al-Ghamdi M (2019) Image based steganography to facilitate improving counting-based secret sharing. 3D Res 10(1):6CrossRefGoogle Scholar
  18. 18.
    Gutub A, Al-Juaid N, Khan E (2019) Counting-based secret sharing technique for multimedia applications. Multimed Tools Appl 78(5):5591–5619CrossRefGoogle Scholar
  19. 19.
    Hamza R, Hassan A, Patil AS (2019) A lightweight secure IoT surveillance framework based on DCT-DFRT algorithms. In: International conference on machine learning for cyber security. Springer, Cham, pp 271–278CrossRefGoogle Scholar
  20. 20.
    Hamza R, Yan Z, Muhammad K, Bellavista P, Titouna F (2019) A privacy-preserving cryptosystem for IoT E-healthcare. Information SciencesGoogle Scholar
  21. 21.
    Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the theory of neural computationGoogle Scholar
  22. 22.
    Kanter I, Kinzel W, Kanter E (2002) Secure exchange of information by synchronization of neural networks. EPL (Europhys Lett) 57(1):141CrossRefGoogle Scholar
  23. 23.
    Klimov A, Mityagin A, Shamir A (2002) Analysis of neural cryptography. In: International conference on the theory and application of cryptology and information security. Springer, Berlin, pp 288–298Google Scholar
  24. 24.
    Mislovaty R, Klein E, Kanter I, Kinzel W (2004) Security of neural cryptography. In: Proceedings of the 2004 11th IEEE international conference on electronics, circuits and systems, 2004. ICECS 2004. IEEE, pp 219–221Google Scholar
  25. 25.
    Mu N, Liao X (2013) An approach for designing neural cryptography. In: International symposium on neural networks. Springer, Berlin, pp 99–108CrossRefGoogle Scholar
  26. 26.
    Rajput M, Deshmukh M (2016) Secure (n, n + 1)-multi secret image sharing scheme using additive modulo. Procedia Comput Sci 89:677–683CrossRefGoogle Scholar
  27. 27.
    Rajput M, Deshmukh M (2016) A technique to share multiple secret images. Inform Process 10(3):2016. arXiv:1611.09261.l Google Scholar
  28. 28.
    Rajput M, Deshmukh M, Nain N (2016) A novel approach for concealing image by utilizing the concept of secret sharing scheme and steganography. In: 2016 International conference on information technology (ICIT). IEEE, pp 51–56Google Scholar
  29. 29.
    Rajput M, Deshmukh M, Nain N, Ahmed M (2018) Securing data through steganography and secret sharing schemes: trapping and misleading potential attackers. IEEE Consum Electron Mag 7(5):40–45CrossRefGoogle Scholar
  30. 30.
    Reyes OM, Kopitzke I, Zimmermann KH (2009) Permutation parity machines for neural synchronization. J Phys A: Math Theor 42(19):195002MathSciNetCrossRefGoogle Scholar
  31. 31.
    Riad K, Hamza R, Yan H (2019) Sensitive and energetic IoT access control for managing cloud electronic health records. IEEE Access 7:86384–86393CrossRefGoogle Scholar
  32. 32.
    Rosen-Zvi M, Klein E, Kanter I, Kinzel W (2002) Mutual learning in a tree parity machine and its application to cryptography. Phys Rev E 66(6):066135MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shivani S (2018) Multi secret sharing with unexpanded meaningful shares. Multimed Tools Appl 77(5):6287–6310CrossRefGoogle Scholar
  35. 35.
    Stallings W (2006) Cryptography and network security, 4/E. Pearson Education IndiaGoogle Scholar
  36. 36.
    Stallings W (2017) Cryptography and network security: principles and practice. Pearson, Upper Saddle River, pp 92–95Google Scholar
  37. 37.
    Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Secure integration of IoT and cloud computing. Futur Gener Comput Syst 78:964–975CrossRefGoogle Scholar
  38. 38.
    Stinson DR (2005) Cryptography: theory and practice. Chapman and Hall/CRCGoogle Scholar
  39. 39.
    Tewari A, Gupta B (2017) Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J Supercomput 73(3):1085–1102CrossRefGoogle Scholar
  40. 40.
    Tsai DS, Chen T, Horng G (2008) On generating meaningful shares in visual secret sharing scheme. Imag Sci J 56(1):49–55CrossRefGoogle Scholar
  41. 41.
    Volkmer M, Wallner S (2005) Tree parity machine rekeying architectures for embedded security. IACR Cryptology ePrint Archive, 2005, p 235Google Scholar
  42. 42.
    Yu C, Li J, Li X, Ren X, Gupta B (2018) Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.National Institute of TechnologySrinagarIndia

Personalised recommendations