Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 22, pp 32239–32259 | Cite as

A systematic survey on block truncation coding based data hiding techniques

  • Rajeev Kumar
  • Ki-Hyun JungEmail author
Article
  • 42 Downloads

Abstract

Block truncation coding is one of the simplest encoding methods which require insignificant computing cost to compress images. Due to the vast demand on embedding data into compressed images with low computing cost, a number of data hiding methods to improve block truncation coding have been proposed to be suitable for the low power devices such as IoT devices, field-programmable gate array, and portable image signal processor. In this paper, block truncation coding based data hiding methods will be discussed and analyzed on two key metrics - data hiding capacity and image quality - as many researchers are focusing to increase the image quality along with data hiding capacity. Here, our aim is to provide guidance to interested researchers for their future works in the field of block truncation coding based data hiding techniques. Finally, future directions of research with some suggestions will be discussed.

Keywords

Data hiding Block truncation coding Information hiding BTC AMBTC Steganography 

Notes

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1A09081842) and Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (No. 2018H1D3A2065993).

References

  1. 1.
    Amirulhaqi A, Purboyo TW, Nugrahaeni RA (2017) Security on GIF images using steganography with LSB method, spread spectrum and the vigenere cipher. Int J Appl Eng Res 12(23):13604–13609Google Scholar
  2. 2.
    Amita, Kaur A, Kumar M (2018) Reversible data hiding in absolute moment block truncation coding compressed images using adaptive multilevel histogram shifting technique. Int J Inf Comput Secur 10(2):261-275.  https://doi.org/10.1504/IJICS.2018.091463 CrossRefGoogle Scholar
  3. 3.
    Chan CK, Chen LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37(3):469–474zbMATHCrossRefGoogle Scholar
  4. 4.
    Chang CC, Lin CY (2007) Reversible steganographic method using SMVQ approach based on declustering. Inf Sci 177(8):1796–1805CrossRefGoogle Scholar
  5. 5.
    Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in DCT-based compressed images. Inf Sci 177(13):2768–2786CrossRefGoogle Scholar
  6. 6.
    Chang CC, Lin CY, Fan YH (2008) Lossless data hiding for color images based on block truncation coding. Pattern Recogn 41:2347–2357zbMATHCrossRefGoogle Scholar
  7. 7.
    Chang CC, Wu HL, Chung TF (2014) Applying histogram modification to embed secret message in AMBTC, Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.  https://doi.org/10.1109/IIH-MSP.2014.128
  8. 8.
    Chang CI, Hu CY, Chen LW, Lu CC (2015) High capacity reversible data hiding scheme based on residual histogram shifting for block truncation coding. Signal Process 108:376–388CrossRefGoogle Scholar
  9. 9.
    Chang CC, Son Y, Nguyen T (2015) A novel data hiding scheme for block truncation coding compressed images using dynamic programming strategy. Sixth International Conference on Graphic and Image Processing (ICGIP 2014). doi:  https://doi.org/10.1117/12.2179686
  10. 10.
    Chang CC, Chen TS, Wang YK, Liu Y (2018) A reversible data hiding scheme based on absolute moment block truncation coding compression using exclusive OR operator. Multimed Tools Appl 77(7):9039–9053CrossRefGoogle Scholar
  11. 11.
    Chen YY, Chi KY (2017) Cloud image watermarking: high quality data hiding and blind decoding scheme based on block truncation coding. Multimedia Systems:1–13.  https://doi.org/10.1007/s00530-017-0560-y CrossRefGoogle Scholar
  12. 12.
    Chen J, Hong W, Chen TS, Shiu CW (2008) Steganography for BTC compressed images using no distortion technique. Imaging Sci J 58:177–185CrossRefGoogle Scholar
  13. 13.
    Chen YY, Hsia CH, Jhong SY, Lin HJ (2018) Data hiding method for AMBTC compressed images. J Ambient Intell Humaniz Comput:1–9.  https://doi.org/10.1007/s12652-018-1048-0
  14. 14.
    Chuang JC, Chang CC (2006) Using a simple and fast image compression algorithm to hide secret information. Int J Comput Appl 28:1735–1743Google Scholar
  15. 15.
    Delp E, Mitchell O (1979) Image compression using block truncation coding. IEEE Trans Commun 27(9):1335–1341CrossRefGoogle Scholar
  16. 16.
    Dutta P, Bhattacharyya D, Kim TH (2009) Data hiding in audio signal: a review. International Journal of Database Theory and Application 2(2):1-8Google Scholar
  17. 17.
    Hong W (2018) Efficient data hiding based on block truncation coding using pixel pair matching technique. Symmetry 10(2).  https://doi.org/10.3390/sym10020036 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hong W, Ma YB, Wu HC (2017) An efficient reversible data hiding method for AMBTC compressed images. Multimed Tools Appl 76(4):5441–5460CrossRefGoogle Scholar
  19. 19.
    Hong W, Chen T, Yin Z, Luo B, Ma Y (2017) Data hiding in AMBTC images using quantization level modification and perturbation technique. Multimed Tools Appl 76:3761–3782CrossRefGoogle Scholar
  20. 20.
    Hong W, Zhou X, Weng S (2018) Joint adaptive coding and reversible data hiding for AMBTC compressed images. Symmetry 10.  https://doi.org/10.3390/sym10070254 CrossRefGoogle Scholar
  21. 21.
    Hong W, Li Y, Weng S (2018) A difference matching technique for data embedment based on absolute moment block truncation coding. Multimed Tools Appl:1–20Google Scholar
  22. 22.
    Huang YH, Chang CC, Chen YH (2017) Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimed Tools Appl 76:6159–6174CrossRefGoogle Scholar
  23. 23.
    Huynh NT, Bharanitharan K, Chang CC, Liu Y (2018) Minima-maxima preserving data hiding algorithm for absolute moment block truncation coding compressed images. Multimed Tools Appl 77(5):5767–5783CrossRefGoogle Scholar
  24. 24.
    Kim C, Shin D, Leng L, Yang CN (2016) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Proc.  https://doi.org/10.1007/s11554-016-0641-8 CrossRefGoogle Scholar
  25. 25.
    Kumar R, Malik A, Singh S, Chand S (2016) A high capacity email based text steganography scheme using huffman compression. 3rd International Conference on Signal Processing and Integrated Networks (SPIN), p 53–56Google Scholar
  26. 26.
    Kumar R, Malik A, Singh S, Kumar B, Chand S (2016) Reversible data hiding scheme for LZW codes using even-odd embedding strategy. Int. Conf. on Computing, Communication and Automation (ICCCA), p 1399–1403Google Scholar
  27. 27.
    Kumar R, Kim DS, Jung KH (2019) Enhanced AMBTC based data hiding method using hamming distance and pixel value differencing. Journal of Information Security and Applications 47:94–103CrossRefGoogle Scholar
  28. 28.
    Lema M, Mitchell O (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32(10):1148–1157CrossRefGoogle Scholar
  29. 29.
    Li CH, Lu ZM, Su YX (2011) Reversible data hiding for BTC-compressed images based on bitplane flipping and histogram shifting of mean tables. Inf Technol J 10(7):1421–1426CrossRefGoogle Scholar
  30. 30.
    Li F, Bharanitharan K, Chang CC, Mao Q (2016) Bi-stretch reversible data hiding algorithm for absolute moment block truncation coding compressed images. Multimed Tools Appl 75(23):16153–16171CrossRefGoogle Scholar
  31. 31.
    Liao X, Wen Q, Zhang J (2013) Improving the adaptive steganographic methods based on modulus function. IEICE Trans Fundam Electron Commun Comput Sci 96(12):2731–2734.  https://doi.org/10.1587/transfun.e96.a.2731 CrossRefGoogle Scholar
  32. 32.
    Liao X, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753.  https://doi.org/10.1007/s11042-016-3971-4 CrossRefGoogle Scholar
  33. 33.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156.  https://doi.org/10.1016/j.image.2017.07.006 CrossRefGoogle Scholar
  34. 34.
    Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2017) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10033–10050.  https://doi.org/10.1007/s11042-017-4946-9 CrossRefGoogle Scholar
  35. 35.
    Liao X, Yin J, Guo S, Li X, Sangaiah AK (2018) Medical JPEG image steganography based on preserving inter-block dependencies. Comput ElectrEng 67:320–329.  https://doi.org/10.1016/j.compeleceng.2017.08.020 CrossRefGoogle Scholar
  36. 36.
    Lin CC, Liu XL (2012) A reversible data hiding scheme for block truncation compressions based on histogram modification. In: Genetic and Evolutionary Computing (ICGEC), Sixth International Conference on, p 157–160Google Scholar
  37. 37.
    Lin CC, Liu XL, Tai WL, Yuan SM (2013) A novel reversible data hiding scheme based on AMBTC compression technique. Multimed Tools Appl.  https://doi.org/10.1007/s11042-013-1801-5 CrossRefGoogle Scholar
  38. 38.
    Lo CC, Hu YC, Chen WL, Wu CM (2014) Reversible data hiding scheme for BTC-compressed images based on histogram shifting. Int J Secur Appl 8(2):301–314Google Scholar
  39. 39.
    Malik A, Sikka G, Verma HK (2016) A high payload data hiding scheme based on modified AMBTC technique.  https://doi.org/10.1007/s11042-016-3815-2 CrossRefGoogle Scholar
  40. 40.
    Malik A, Sikka G, Verma HK (2018) A high capacity data hiding scheme using modified AMBTC compression technique. International Arab Journal of Information Technology (IAJIT)Google Scholar
  41. 41.
    Malik A, Sikka G, Verma HK An AMBTC compression based data hiding scheme using pixel value adjusting strategy. Multidim Syst Sign Process.  https://doi.org/10.1007/s11045-017-0530-8 CrossRefGoogle Scholar
  42. 42.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst. Video Technol 16(3):354–362CrossRefGoogle Scholar
  43. 43.
    Ou D, Sun W (2015) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed Tools Appl 74:9117–9139CrossRefGoogle Scholar
  44. 44.
    Paruchuri JK, Cheung SC, Hail M (2009) Video data hiding for managing privacy information in surveillance systems. EURASIP J Inf Sec: 1–18.  https://doi.org/10.1155/2009/236139 CrossRefGoogle Scholar
  45. 45.
    Shiu PF, Tai WL, Jan JK, Chang CC, Lin CC (2019) An interpolative AMBTC-based high-payload RDH scheme for encrypted images. Signal Process Image Commun 74:64–77CrossRefGoogle Scholar
  46. 46.
    Sun W, Lu ZM, Wen YC, Yu FX, Shen RJ (2013) High performance reversible data hiding for block truncation coding compressed images. SIViP 7(2):297–306CrossRefGoogle Scholar
  47. 47.
    Sun S, Yin Z, Tang J, Luo B (2017) Improved reversible data hiding scheme based on AMBTC compression technique. International Conference on Industrial IoT Technologies and Applications Industrial IoT: Industrial IoT Technologies and Applications, p 111–118Google Scholar
  48. 48.
    Tang M, Zeng S, Chen X, Hu J, Du Y (2017) An adaptive image steganography using AMBTC compression and interpolation technique. Optik 127(1):471–477CrossRefGoogle Scholar
  49. 49.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tsai YY, Chan CS, Liu CL, Su BR (2014) A reversible steganographic algorithm for BTC-compressed images based on difference expansion and median edge detector. The Imaging science Journal 62(1):48–55CrossRefGoogle Scholar
  51. 51.
    Wang K, Hu Y, Lu ZM (2012) Reversible data hiding for block truncation coding compressed images based on prediction-error expansion. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Piraeus, p 317–320Google Scholar
  52. 52.
    Wu DC, Tsai WH (2003) A steganographic method for images by pixel-value differencing. Pattern Recogn Lett 24(9):1613–1626zbMATHCrossRefGoogle Scholar
  53. 53.
    Yang B, Schmucker M, Funk W, Brush C, Sun S (2004) Integer DCT-based reversible watermarking for images using compounding technique. In: Proceedings of the SPIE, Security, Steganography and Watermarking of Multimedia Contents, vol. 5306, p 405–415Google Scholar
  54. 54.
    Yin Z, Niu X, Zhang X, Tang J, Luo B (2018) Reversible data hiding in encrypted AMBTC images. Multimed Tools Appl 77(14):18067–18083CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Guo S-Z, Lu Z-M, Luo H (2013) Reversible data hiding for BTC-compressed images based on lossless coding of mean tables. IEICE Trans Commun 96(2):624–631CrossRefGoogle Scholar
  56. 56.
    Zhao ZF, Tang LL (2012) High capacity reversible data hiding in AMBTC-compressed images. Int J Digit Content Technol Appl 6:205–211Google Scholar
  57. 57.
    Zhou X, Hong W, Peng C, Chen TS, Zhai Y (2018) A reversible data hiding scheme for AMBTC images using gray code and exclusive-or approaches, 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IT Research & Development CenterWookyung Information TechnologyBuk-gu, DaeguRepublic of Korea
  2. 2.Department of Cyber SecurityKyungil UniversityGyeongsan-siRepublic of Korea

Personalised recommendations