Multimedia Tools and Applications

, Volume 78, Issue 23, pp 33151–33167 | Cite as

Visualization of (multimedia) dependencies from big data

  • Loredana CaruccioEmail author
  • Vincenzo Deufemia
  • Giuseppe Polese


Data dependencies represent one of the key metadata to characterize and profile multimedia and big data sources. With respect to traditional databases, in these new contexts it has been necessary to introduce some approximations in the definition of dependencies. This yields a proliferation of dependencies, which makes it difficult for a user to effectively analyze them. To this end, in this paper we present a technique for ranking and visualizing dependencies holding on big and multimedia data. A qualitative evaluation has highlighted the advantages of the proposed visualization metaphors.


Knowledge visualization Visual analytics Relaxed functional dependencies Multimedia data Visual metaphors 



  1. 1.
    Abedjan Z, Schulze P, Naumann F (2014) DFD: efficient functional dependency discovery. In: Proc. Int. Conf. on information and Knowl. Management (CIKM), pp 949–958Google Scholar
  2. 2.
    Abedjan Z, Golab L, Naumann F (2015) Profiling relational data: a survey. VLDB J 24(4):557–581CrossRefGoogle Scholar
  3. 3.
    Arenas M, Libkin L (2004) A normal form for XML documents. ACM Trans Database Syst 29(1):195–232CrossRefGoogle Scholar
  4. 4.
    Blake CL, Merz CJ (1998) UCI repository of machine learning databases.
  5. 5.
    Bobrov N, Birillo A, Chernishev G (2017) A survey of database dependency concepts. In: Chernishev G, Akhin M, Novikov B, Itsykson V (eds) Proceedings of the 2nd conference on software engineering and information management, no. 1864 in CEUR Workshop Proceedings. Saint PetersburgGoogle Scholar
  6. 6.
    Bohannon P, Fan W, Geerts F, Jia X, Kementsietsidis A (2007) Conditional functional dependencies for data cleaning. In: Proc. of the 25th international conference on data engineering, ICDE ’07, pp 746–755Google Scholar
  7. 7.
    Carpendale S (2008) Information visualization. In: Kerren A, Stasko JT, Fekete JD, North C (eds) Information visualization, chap. Evaluating information visualizations. Springer, Berlin, pp 19–45Google Scholar
  8. 8.
    Caruccio L (2018) Relaxed functional dependencies: definition, discovery and applications. Ph.D. thesis, University of SalernoGoogle Scholar
  9. 9.
    Caruccio L, Deufemia V, Polese G (2016) On the discovery of relaxed functional dependencies. In: Proceedings of the 20th international database engineering & applications symposium, IDEAS ’16, pp 53–61Google Scholar
  10. 10.
    Caruccio L, Deufemia V, Polese G (2016) Relaxed functional dependencies – a survey of approaches. IEEE Trans Knowl Data Eng 28(1):147–165CrossRefGoogle Scholar
  11. 11.
    Caruccio L, Deufemia V, Polese G (2017) Evolutionary mining of relaxed dependencies from big data collections. In: Proceedings of the 7th international conference on web intelligence, mining and semantics, WIMS 2017, Amantea, Italy, June 19-22, 2017, pp 5:1–5:10Google Scholar
  12. 12.
    Chang SK, Deufemia V, Polese G, Vacca M (2007) A normalization framework for multimedia databases. IEEE Trans Knowl Data Eng 19(12):1666–1679CrossRefGoogle Scholar
  13. 13.
    Chen F, Chiu P, Lim S (2016) Topic modeling of document metadata for visualizing collaborations over time. In: Proceedings of the 21st international conference on intelligent user interfaces, IUI ’16, pp 108–117Google Scholar
  14. 14.
    Chen W, Xie C, Shang P, Peng Q (2017) Visual analysis of user-driven association rule mining. J Vis Lang Comput 42:76–85CrossRefGoogle Scholar
  15. 15.
    Chiang F, Miller RJ (2008) Discovering data quality rules. Proc VLDB Endow 1(1):1166–1177CrossRefGoogle Scholar
  16. 16.
    Fan W, Geerts F, Lakshmanan LVS, Xiong M (2009) Discovering conditional functional dependencies. In: Proc. of the 25th international conference on data engineering, ICDE’09, pp 1231–1234Google Scholar
  17. 17.
    Fan W, Gao H, Jia X, Li J, Ma S (2011) Dynamic constraints for record matching. VLDB J 20:495–520CrossRefGoogle Scholar
  18. 18.
    Flach PA, Savnik I (1999) Database dependency discovery: a machine learning approach. AI Commun 12(3):139–160MathSciNetGoogle Scholar
  19. 19.
    Gallo G, Longo G, Pallottino S, Nguyen S (1993) Directed hypergraphs and applications. Discret Appl Math 42(2):177–201MathSciNetCrossRefGoogle Scholar
  20. 20.
    Giannella C, Robertson E (2004) On approximation measures for functional dependencies. Inform Syst 29(6):483–507CrossRefGoogle Scholar
  21. 21.
    Golab L, Karloff H, Korn F, Srivastava D, Yu B (2008) On generating near-optimal tableaux for conditional functional dependencies. PVLDB 1(1):376–390Google Scholar
  22. 22.
    Hofmann H, Siebes APJM, Wilhelm AFX (2000) Visualizing association rules with interactive mosaic plots. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’00. ACM, pp 227–235Google Scholar
  23. 23.
    Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12(5):741–748CrossRefGoogle Scholar
  24. 24.
    Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1998) Efficient discovery of functional and approximate dependencies using partitions. In: ICDE, pp 392–401Google Scholar
  25. 25.
    Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1999) TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput J 42(2):100–111CrossRefGoogle Scholar
  26. 26.
    Ilyas IF, Markl V, Haas P, Brown P, Aboulnaga A (2004) CORDS: automatic discovery of correlations and soft functional dependencies. In: Proc. of the 2004 ACM SIGMOD international conference on management of data, SIGMOD’04, pp 647–658Google Scholar
  27. 27.
    King R, Oil J (2003) Discovery of functional and approximate functional dependencies in relational databases. J Appl Math Decision Sci 7(1):49–59MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kivinen J, Mannila H (1995) Approximate inference of functional dependencies from relations. Theor Comput Sci 149(1):129–149MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kwashie S, Liu J, Li J, Ye F (2014) Mining differential dependencies: a subspace clustering approach. In: Proc. of Australasian database conference (ADC), pp 50–61Google Scholar
  30. 30.
    Kwashie S, Liu J, Li J, Ye F (2015) Efficient discovery of differential dependencies through association rules mining. In: Proc. of Australasian database conference (ADC), pp 3–15Google Scholar
  31. 31.
    Lee ML, Ling TW, Low WL (2002) Designing functional dependencies for XML. In: Proc. of the 8th international conference on extending database technology, EDBT ’02, pp 124–141CrossRefGoogle Scholar
  32. 32.
    Leung CK, Irani PP, Carmichael CL (2008) Wifisviz: effective visualization of frequent itemsets. In: 2008 eighth IEEE international conference on data mining, pp 875–880Google Scholar
  33. 33.
    Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys Doklady 10(8):707–710MathSciNetGoogle Scholar
  34. 34.
    Li J (2006) On optimal rule discovery. IEEE Trans Knowl Data Eng 18(4):460–471CrossRefGoogle Scholar
  35. 35.
    Liu G, Suchitra A, Zhang H, Feng M, Ng SK, Wong L (2012) AssocExplorer: an association rule visualization system for exploratory data analysis. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, pp 1536–1539Google Scholar
  36. 36.
    Liu J, Li J, Liu C, Chen Y (2012) Discover dependencies from data - a review. IEEE Trans Knowl Data Eng 24(2):251–264CrossRefGoogle Scholar
  37. 37.
    Lopes S, Petit JM, Lakhal L (2000) Efficient discovery of functional dependencies and Armstrong relations. In: Proc. Int. Conf. on extending database technology (EDBT), pp 350–364CrossRefGoogle Scholar
  38. 38.
    Novelli N, Cicchetti R (2001) FUN: an efficient algorithm for mining functional and embedded dependencies. In: Proc. Int. Conf. on database theory (ICDT), pp 189–203CrossRefGoogle Scholar
  39. 39.
    Papenbrock T, Bergmann T, Finke M, Zwiener J, Naumann F (2015) Data profiling with Metanome. Proc VLDB Endow 8(12):1860–1863CrossRefGoogle Scholar
  40. 40.
    Raju KVSVN, Majumdar AK (1988) Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans Database Syst 13 (2):129–166CrossRefGoogle Scholar
  41. 41.
    Sekhavat YA, Hoeber O (2013) Visualizing association rules using linked matrix, graph, and detail views. Int J Internet Sci 3:34–49Google Scholar
  42. 42.
    Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE symposium on visual languages, VL ’96. IEEE, pp 336–343Google Scholar
  43. 43.
    Shneiderman B, Plaisant C (2006) Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies. In: Proceedings of the 2006 AVI workshop on beyond time and errors: novel evaluation methods for information visualization, BELIV ’06. ACM, New York, pp 1–7Google Scholar
  44. 44.
    Song S, Chen L (2011) Differential dependencies: reasoning and discovery. ACM Trans Database Syst 36:16:1–16:41CrossRefGoogle Scholar
  45. 45.
    Song S, Chen L (2013) Efficient discovery of similarity constraints for matching dependencies. Data Knowl Eng (DKE) 87:146–166CrossRefGoogle Scholar
  46. 46.
    Song S, Chen L, Cheng H (2014) Efficient determination of distance thresholds for differential dependencies. IEEE Trans Knowl Data Eng 26(9):2179–2192CrossRefGoogle Scholar
  47. 47.
    Sugibuchi T, Spyratos N, Siminenko E (2009) A framework to analyze information visualization based on the functional data model. In: 13Th international conference information visualisation, pp 18–24Google Scholar
  48. 48.
    Vassiliev V (1990) Cohomology of knot spaces. Adv Soviet Math: 23–69Google Scholar
  49. 49.
    Vianu V (1987) Dynamic functional dependencies and database aging. J ACM 34(1):28–59MathSciNetCrossRefGoogle Scholar
  50. 50.
    Wang Y, Song S, Chen L, Yu JX, Cheng H (2017) Discovering conditional matching rules. ACM Trans Knowl Discov Data (TKDD) 11(4):46Google Scholar
  51. 51.
    Wyss C, Giannella C, Robertson E (2001) FastFDs: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances. In: Proc. Int. Conf. on data warehousing and knowl. Discovery (DaWak), pp 101–110Google Scholar
  52. 52.
    Xie C, Chen W, Huang X, Hu Y, Barlowe S, Yang J (2014) Vaet: a visual analytics approach for e-transactions time-series. IEEE Trans Vis Comput Graph 20(12):1743–1752CrossRefGoogle Scholar
  53. 53.
    Yao H, Hamilton HJ, Butz CJ (2002) FDMine: discovering functional dependencies in a database using equivalences. In: Proceedings of the international conference on data mining, pp 729–732Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of SalernoFiscianoItaly

Personalised recommendations