Advertisement

Active contour with modified Otsu method for automatic detection of polycystic ovary syndrome from ultrasound image of ovary

  • C. GopalakrishnanEmail author
  • M. Iyapparaja
Article
  • 18 Downloads

Abstract

Polycystic ovary syndrome (PCOS) disorder is identified by the presence of a number of follicles present in the ovary of female reproductive system. Ultrasound imaging of the ovary contains essential information about the size, number of follicles and its position. In real time, the detection of PCOS is a difficult task for radiologists due to the various sizes of follicles and is highly connected with blood vessels and tissues. This often results in error diagnosis. For preprocessing various standard filtering techniques are applied on ovary image. Based on the performance, appropriate filter is chosen to remove the noise from the image. This paper presents an effectual active contour with modified Otsu threshold value to automated discovery of follicles from the ultrasound images. The performances of the proposed method illustrate the betterments of the proposed approach over other techniques.

Keywords

Follicle PCOS Ultrasound image active contour Modified Otsu 

Notes

References

  1. 1.
    Abdel-Basset M, Manogaran G, Fakhry AE, El-Henawy I (2018) 2-levels of clustering strategy to detect and locate copy-move forgery in digital images. Multimed Tools Appl, 1–19Google Scholar
  2. 2.
    Adam B, Joop SE, Laven S-LT, Dewailly D (2003) Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum Reprod 9(6):505–514Google Scholar
  3. 3.
    Affiliates of Medifocus.com (2007) Medifocus guidebook: polycystic ovary syndrome. Medifocus.com, Inc
  4. 4.
    Bal and H. Mohan (2007) Malignant transformation in mature cystic Teratoma of the ovary: report of five cases and review of the literature. Arch Gynecol Obstet 275(3):179–182CrossRefGoogle Scholar
  5. 5.
    Battaglia C, Artini PG, Genazzani AD, Gremigni R, Slavatori MR, Sgherzi MR (1997) Color Doppler analysis in oligo and Amenorrheic women with polycystic ovary syndrome. Gynecol Endocrinol 11(2):105–110CrossRefGoogle Scholar
  6. 6.
    Caselles V, Kimmel R, Sapiro G (1997) On geodesic active contours. Int J Comput Vis 22(1):61–79CrossRefGoogle Scholar
  7. 7.
    Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefGoogle Scholar
  8. 8.
    Courant R, Friedrichs K, Lewy H (1928) Uber die partiellenDifferenzengleichungen der mathematischenPhysik. MathematischeAnnalen 100(1):32–74. http://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition zbMATHGoogle Scholar
  9. 9.
    Deng Y, Wang Y, Chen P (2008) Automated detection of polycystic ovary syndrome from ultrasound image. 30th annual international IEEE engineering in medicine and biology society conference Vancouver, British Columbia, Canada: 20-24Google Scholar
  10. 10.
    Deng Y, Wang Y, Shen Y (2011) An automated diagnostic system of polycystic ovary syndrome based on object growing. J Artif Intell Med Elsevier Sci Publishers Ltd Essex, UK 51(3):199–209Google Scholar
  11. 11.
    Finn S, Glavin M, Jones E (2011) Echocardiographic speckle reduction comparision. IEEE Trans Ultrason Ferroelectr Freq Contrl 58(1):82–101CrossRefGoogle Scholar
  12. 12.
    Frost VS, Stiles JA, Shanmugam KS, Holtzman JC (1982) A model for radar image & its application to adaptive digital filtering for multiplicative noise. IEEE Trans Pattern Anal Mach Intell PAMI-4(2):157–166CrossRefGoogle Scholar
  13. 13.
    Gharbia R, Hassanien AE, El-Baz AH, Elhoseny M, Gunasekaran M (2018) Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications. Futur Gener Comput Syst 88:501–511CrossRefGoogle Scholar
  14. 14.
    Gonzalez RC, Woods RE (2002) Digital image processing, Second Edition, Pearson EduGoogle Scholar
  15. 15.
    Hanna MD, Chizen DR, Pierson R (1994) Characteristics of follicular evacuation during human ovulation. J Ultrasound Obstetr Gynecol 4(6):488–493CrossRefGoogle Scholar
  16. 16.
    Hiremath PS, Jyothi Tegnoor R (2011) Automatic detection of follicles in ultrasound images of ovaries using active contours method. Int J Serv Comput Comput Intell 1(1):26–30Google Scholar
  17. 17.
    Hiremath PS, Tegnoor JR (2010) Automatic detection of follicles in ultrasound images of ovaries using edge based method. International Journal of Computer Applications Special Issue on Recent Trends in Image Processing and Pattern Recognition: 15–16Google Scholar
  18. 18.
    Iyapparaja M, Sivakumar P (2017) Metrics based evaluation for disease affection in distinct cities. Res J Pharm Tech 10(8):2487–2491CrossRefGoogle Scholar
  19. 19.
    Iyapparaja M, Tiwari M (2017) Security policy speculation of user uploaded images on content sharing sites. IOP Conf Ser: Mater Sci Eng 263:042018.  https://doi.org/10.1088/1757-899X/263/4/042019 pp-1-8CrossRefGoogle Scholar
  20. 20.
    Kelsey TW, Wallace WHB (2012) Ovarian volume correlates strongly with number of non growing follicles in the human ovary. Obstet Gynecol Int 2012:1–5CrossRefGoogle Scholar
  21. 21.
    Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985) Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell PAMI-7(2):165–177CrossRefGoogle Scholar
  22. 22.
    Lee JS (1980) Digital image enhancement and noise filtering by using local statistics. IEEE Trans Pattern Anal Mach Intell PAMI-2(2):165–168CrossRefGoogle Scholar
  23. 23.
    Mehrotra P, Chakraborty C (2011) Automated ovarian follicle recognition for polycystic ovary syndrome. International Conference on Image Information Processing: 1–4.Google Scholar
  24. 24.
    Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):64–78CrossRefGoogle Scholar
  25. 25.
    Murugan NS, Devi GU (2018) Cluster Comput. doi: https://doi.org/10.1007/s10586-018-2158-3
  26. 26.
    Murugan NS, Usha Devi G (2018) Detecting streaming of twitter spam using hybrid method. Wirel Pers Commun : 1-22Google Scholar
  27. 27.
    Nicolae MC (2010) Comparative approach for speckle reduction in medical ultrasound images. Romanian J Bio-Phys 20(1):13–21MathSciNetGoogle Scholar
  28. 28.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12–49MathSciNetCrossRefGoogle Scholar
  29. 29.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet 9(1):62–66CrossRefGoogle Scholar
  30. 30.
    Pache TD, WWladimiroff J, Hop WC, CFauser B (1992) How to discriminate between Normal and polycystic ovaries: transvaginal US study. Radiology 183(2):421–423CrossRefGoogle Scholar
  31. 31.
    Pellicer A, Gaitán P, Neuspiller F, Ardiles G, Albert C, Remohí J, Simón C (1998) Ovarian follicular dynamics: from basic science to clinical practice. J Reprod Immunol 39(1-2):29–61CrossRefGoogle Scholar
  32. 32.
    Phillips C (1999) The level-set method. MIT Undergraduate Journal of MathematicsGoogle Scholar
  33. 33.
    Ratha TJ, Ramar K (2010) A modified method for speckle noise removal in ultrasound medical images. Int J Comput Electric Eng 2(1):54–58Google Scholar
  34. 34.
    Sudha S, Suresh GR, Sukanesh R (2009) Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. Int J Comput Theor Eng 1(1):7–12CrossRefGoogle Scholar
  35. 35.
    Yamanaka Y, Tateiwa Y (2005) Preoperative diagnosis of malignant transformation in mature cystic Teratoma of the ovary. Eur J Gynecologic Oncol 26(4):391–392Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Technology and EngineeringVIT UniversityVelloreIndia

Personalised recommendations